
Nonbook problems

1. Verify that for any nonzero constant b, the function f(x) = 1
b

cosh(bx) satisfies the differential
equation

d2y

dx2
− b

√
1 + (

dy

dx
)2 = 0.

(Recall that the function ”cosh” is defined by cosh(x) = 1
2
(ex + e−x).)

2. Verify that on the interval −2 < x < 2, the two continuous functions y(x) =
√

4− x2 and
y(x) = −

√
4− x2, obtainable from the implicit solution x2 + y2 = 4 of the differential equation

x+ y dy/dx = 0, are (explicit) solutions of this differential equation.

3. Show that if L1 and L2 are linear operators, then L1 + L2 is a linear operator.

4. Show by induction on n that if an operator L is linear, then for all n ≥ 1, all constants
c1, c2, . . . , cn, and all functions f1, f2, . . . fn,

L[c1f1 + c2f2 + . . .+ cnfn] = c1L[f1] + c2L[f2] + . . .+ cnL[fn].

5. Show that the following distributive law holds for linear operators: if L1, L2, R1, and R2 are
linear operators, then

(L1 + L2)(R1 +R2) = L1R1 + L1R2 + L2R1 + L2R2.

Note: Because linear operators don’t commute with each other in general (see the next exercise),
the formula above is valid only with the L’s in front of the R’s on the right-hand side of the
equation.

6. In class it was stated that general linear differential operators L1, L2 do not commute with
each other: L1L2 6= L2L1. Part (a) of this problem verifies this statement by giving examples of
operators that do not commute. It is still true that some linear differential operators commute
with each other; you will see examples of this in parts (b) and (c).

(a) Let L1 be the operator “multiplication by p”, where p is a non-constant function, and
let L2 = D (the first-derivative operator). Show that L1L2 6= L2L1.

(b) Let L1 and L2 be as in part (a), but this time assume that p is a constant function.
Show that in this case L1L2 = L2L1.

(c) Let a and b be constants, and let L1 and L2 be the linear differential operators D + a
and D + b, respectively. Using part (b) plus Exercise 5 above, show that L1L2 = L2L1.

What you have shown in parts (a), (b) and (c) are special cases of a more general principle:
all constant-coefficient linear differential operators anD

n + an−1D
n−1 + . . .+ a1D+ a0 commute

with each other (here the a’s are constants), but non-constant-coefficient linear differential
operators pnD

n + pn−1D
n−1 + . . . + p1D + p0 (here the p’s are functions at least one of which
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is non-constant) in general do not commute with constant-coefficient operators or with other
non-constant-coefficient operators.

7. The method of problems 4.3/38–39 in the book can be adapted to give solutions to sev-
eral cases of Cauchy-Euler (pronounced “Co-she Oiler”) equations not covered in the book’s
exercises. In this problem we consider these other cases.

(a) Fix numbers a, b, c (with a 6= 0) and consider the second-order homogeneous Cauchy-
Euler equation

ax2 d
2y

dx2
+ bx

dy

dx
+ cy = 0. (1)

If we consider this equation on the interval {x < 0}, the substitution x = et cannot be used
(why not?). However, using the Chain Rule and the substitution x = −u, show that (1) for
x < 0 is equivalent to the equation

au2 d
2z

du2
+ bu

dz

du
+ cz = 0 (2)

for u > 0, where z(u) = y(x) = z(−x). Except for the names of the variables, equations (1)
and (2) are the same. Use this to show that if φ(x) is a solution of ax2y′′ + bxy′ + cy = 0 on
the interval {x > 0}, then φ(−x) is a solution of the same DE on the interval {x < 0}, and
vice-versa. Thus show that if ygen(x) is the general solution of (1) on the interval {x > 0}, then
ygen(|x|) is the general solution of (1) on the interval {x < 0}.

(b) Using the methods of the book’s 4.3/38–39, find the general solution y(x) of

6x2y′′ + xy′ + y = 0 (3)

on the interval {x > 0}. Then, using part (a) above, find the general solution of (3) on the
interval {x < 0}.

(c) Using the methods of the book’s 4.3/38–39, find the general solution y(x) of

x2y′′ + 5xy′ + 4y = 0 (4)

on the interval {x > 0}. (Remember that your answer must be expressed purely in terms of x,
not partly in terms of x and partly in terms of t.) Then, using part (a) above, find the general
solution of (4) on the interval {x < 0}.
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