Non-book problems (revised 9/14/16)

1. Verify that for any nonzero constant b, the function f(z) = ; cosh(bx) satisfies the differential
equation

Py i+ (d—y)zzo.

dx? dx
(Recall that the function “cosh” is defined by cosh(z) = 3(e* 4 e7%).)

2. Consider the equation

2’ +y? =4 (1)
On the interval —2 < x < 2, there are two continuous functions of x determined by (1). These
may be expressed by the equations y = v4 — 22 and y = —v/4 — 2. Show that each of these
two equations is an explicit solution of the differential equation = + y dy/dx = 0. (Note that
this is the DE obtained by implicitly differentiating (1) with respect to x, and then dividing by
2 just to simplify.)

3. Solve the equation

dy xsinx

dr  Iny
4. Solve the equation

dy tan"'z

de — ye

(Notational reminder: “tan™!” denotes the inverse-tangent function, also called arctangent, and
also written “arctan”. It does mot denote the reciprocal of the tangent function, which is the
cotangent function “cot”.)

5. Let p be a function that is differentiable on the whole real line, and consider the separable
differential equation

Y~ o). 2)

(Here, the function g(z) that you're used to seeing is just the constant function 1.)

(a) Show that the family of all solutions of (2) is translation-invariant in the following sense:
if y = ¢(z) is a solution on an interval a < z < b, and k is any constant, then y = ¢(x — k) is
a solution on the interval a + k < x < b+ k. (Said another way: horizontally translating the
graph of a solution by any amount, you get the graph of another solution.)

(b) Using the Fundamental Existence/Uniqueness Theorem for First-Order Initial-Value
Problems (Theorem 1 on p. 11 in the textbook), show that for every point (z¢, 1) € R?, the
initial-value problem



L —ply), ylw) =, )

has a unique solution on some open interval containing x.

(c) Assume that there are numbers ¢ < d such that p(c) = p(d) = 0. Use the “Uniqueness”
part of the Fundamental Existence/Uniqueness Theorem to show all of the following. (Once
you see how to do any one of these, the other two should be easy.)

e (i) If yo > d, and ¢ is a solution of (3) defined on an open interval I, containing x¢, then
¢(x) > d for all z € I,,. (Note: you are not allowed to assume that I, is a small interval;
you have to show that what’s stated is true no matter how large I, is. I,, could even be
the whole real line.)

e (ii) If yg < ¢, then the solution ¢ of (3) satisfies ¢(x) < ¢ for all x € I,. (Same note as
above applies.)

e (iii) If ¢ < yo < d, then the solution ¢ of (3) satisfies ¢(x) > d for all € I,,. (Same note
as above applies.)

6. Solve the differential equation % = 2zy(1 — y?).

7. Solve the following differential equations.
(a) % 4 2y =¢', t<0.
(b) % — (tanz)y =secxlnz, 0<zx <7/2.

(c) 2?% — 37y = 2 tan~' .

8. Show that if F} and F5, are differentiable functions on an open rectangle R in the xy plane,
and dFy = dF) throughout R, then Fy and F differ by a constant (i.e. there is a constant C'
such that Fy(x,y) = Fi(z,y) + C for all (z,y) € R).

9. Passing the “Exactness Test” not sufficient for exactness on domain with a
hole. As discussed in class and in the book, if M and N are continuously differentiable
(i.e. have continuous first partial derivatives) on an open rectangle R in the zy plane, and
M, = N, throughout R, then Mdx + Ndy is exact on R. A rectangle is an example of what
mathematicians call a simply connected region: a region with “no holes”. (The intuitive notion
of “no holes” can be given a precise definition, but not in MAP 2302.) It can be shown that on
any simply connected region R, not just rectangles, if M and N are continuously differentiable,
then Mdx + Ndy is exact on R if and only if M, = N, throughout R.

If R is not simply connected, then “M, = N,” is still a necessary condition for exactness
on R, but not a sufficient condition: there are always differentials that satisty M, = N,, but
that are not exact. You will construct an example in this exercise. The non-simply-connected
region we will use is



R={(z,y) e R* | (z,y) # (0,0)}, (4)

i.e. R? with the origin removed. This region has a “hole” at the origin. On R, define

M(%?J):m, N(%Z/):m- (5)
For the rest of this exercise, “R” always means the region in (4), and “M” and “N” always
mean the functions in (5).

(a) Show that M and N are continuously differentiable on R and that M, = N, throughout
R.

(b) Show that on the set {(z,y) € R? | x and y are both nonzero} (i.e. R? with the
coordinate axes removed),

M (z,y)dx + N(z,y)dy = d(tan_l(%)) = d(—tan_l(g)).

(c) Define four functions as follows, with the indicated domains.

Fright(xvy) = tan_1<g)7 .’L’>O

i
Xz m
Fupper(xvy) = _tan_l(g) + 5, y > 0.
Heft(x7y) = tan71<g>+ﬂ', x < 0.
xr
3
Fiower(xay) - _tan_1<£) + 771-, Yy < 0.
Yy

Show that the following four identities hold:

Fignt(z,y) throughout open quadrant I.

)

) = Fupper(®,y) throughout open quadrant II.
) = Feg(z,y) throughout open quadrant III.
)

= Fower(7,y) + 2m throughout open quadrant IV.

Quadrants [-IV are the usual quadrants of the xy plane, and “open quadrant” means “quadrant
with the coordinate axes removed”.

(d) Use the result of exercise 8 (of these non-book problems) to show the following:

® [pper is the only continuously differentiable function defined on the entire open upper
half-plane {(z,y) € R? : y > 0} whose differential is M dz + N dy on this half-plane and
that coincides with Flign on open quadrant I.
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o [l is the only continuously differentiable function defined on the entire open left half-
plane {(x,y) € R?: x < 0} whose differential is M dz + N dy on this half-plane and that
coincides with Fjpper on open quadrant II.

e Flower is the only continuously differentiable function defined on the entire open lower
half-plane {(x,y) € R* : y < 0} whose differential is M dz + N dy on this half-plane and
that coincides with Flei on open quadrant III.

(e) Show that because the identities in part (c¢) hold, the following definition of a function
F on the domain

{(z,y) € R*: (2,y) # (a,0) for any a > 0} (6)
(i.e. R? with the origin and positive z-axis removed) is unambiguous, even though within each
open quadrant the definition gives two different formulas for F:

F(z,y) = Fugt(r,y) in open quadrant I.

F(x,y) = Fuypper(z,y) ify >0, ie. for (z,y) in the open upper half-plane.
F(z,y) = Fex(z,y) ifx <0, ie. for (z,y) in the open left half-plane.
F(z,y) = Fowel(z,y) ify <0, ie. for (z,y) in the open lower half-plane.
F(z,y) = Figt(r,y)+ 27 in open quadrant IV.

This function has a simple geometric interpretation: F(x,y) is the polar coordinate
6 € (0,27) of the point (z,y).

(f) Use part (d) to show that F' is the only differentiable function defined on the domain
6) whose differential is M dx + N dy on this domain and that coincides with Fj.¢ on open
g
quadrant I.

(g) Show that for all xy > 0, lim,_,o4 F'(zo,y) = 0, while lim,_,o_ F(zo,y) = 27.

(h) Use part (g) to show that there is no continuous function defined on the whole domain
R (see (4)) that coincides with F' on the domain (6). Then, combine this fact with part (f) to
show that there is no continuously differentiable function on R whose differential is M dz+ N dy
on this domain and that coincides with Fp,e, on open quadrant I.

(1) Use exercise 9 to show that if G is any continuously differentiable function defined on
open quadrant I for which dG = Mdz + Ndy, then, on open quadrant I, G differs from Fipper
only by an additive constant.

(j) Use parts (h) and (i) to show that there is no differentiable function H defined on all
of R for which dH = Mdx + Ndy. Thus, Mdx + Ndy is not exact on R, despite satisfying
M, = N, at every point of R.

Fact: It is accepted practice to write “df” for the differential %dm—i— 7 ady on R, even
though there is no differentiable function € defined on all of R whose differential is df!
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