
Non-book problems (revised 9/14/16)

1. Verify that for any nonzero constant b, the function f(x) = 1
b

cosh(bx) satisfies the differential
equation

d2y

dx2
− b

√
1 +

(
dy

dx

)2

= 0.

(Recall that the function “cosh” is defined by cosh(x) = 1
2
(ex + e−x).)

2. Consider the equation
x2 + y2 = 4. (1)

On the interval −2 < x < 2, there are two continuous functions of x determined by (1). These
may be expressed by the equations y =

√
4− x2 and y = −

√
4− x2. Show that each of these

two equations is an explicit solution of the differential equation x + y dy/dx = 0. (Note that
this is the DE obtained by implicitly differentiating (1) with respect to x, and then dividing by
2 just to simplify.)

3. Solve the equation

dy

dx
=
x sinx

ln y
.

4. Solve the equation

dy

dx
=

tan−1 x

ye2y
.

(Notational reminder: “tan−1” denotes the inverse-tangent function, also called arctangent, and
also written “arctan”. It does not denote the reciprocal of the tangent function, which is the
cotangent function “cot”.)

5. Let p be a function that is differentiable on the whole real line, and consider the separable
differential equation

dy

dx
= p(y). (2)

(Here, the function g(x) that you’re used to seeing is just the constant function 1.)

(a) Show that the family of all solutions of (2) is translation-invariant in the following sense:
if y = φ(x) is a solution on an interval a < x < b, and k is any constant, then y = φ(x− k) is
a solution on the interval a + k < x < b + k. (Said another way: horizontally translating the
graph of a solution by any amount, you get the graph of another solution.)

(b) Using the Fundamental Existence/Uniqueness Theorem for First-Order Initial-Value
Problems (Theorem 1 on p. 11 in the textbook), show that for every point (x0, y0) ∈ R2, the
initial-value problem
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dy

dx
= p(y), y(x0) = y0, (3)

has a unique solution on some open interval containing x0.

(c) Assume that there are numbers c < d such that p(c) = p(d) = 0. Use the “Uniqueness”
part of the Fundamental Existence/Uniqueness Theorem to show all of the following. (Once
you see how to do any one of these, the other two should be easy.)

• (i) If y0 > d, and φ is a solution of (3) defined on an open interval Ix0 containing x0, then
φ(x) > d for all x ∈ Ix0 . (Note: you are not allowed to assume that Ix0 is a small interval;
you have to show that what’s stated is true no matter how large Ix0 is. Ix0 could even be
the whole real line.)

• (ii) If y0 < c, then the solution φ of (3) satisfies φ(x) < c for all x ∈ Ix0 . (Same note as
above applies.)

• (iii) If c < y0 < d, then the solution φ of (3) satisfies φ(x) > d for all x ∈ Ix0 . (Same note
as above applies.)

6. Solve the differential equation dy
dx

= 2xy(1− y2).

7. Solve the following differential equations.
(a) du

dt
+ 2

t
u = et, t < 0.

(b) dy
dx
− (tanx)y = secx lnx, 0 < x < π/2.

(c) x2 dy
dx
− 3xy = x6 tan−1 x.

8. Show that if F1 and F2 are differentiable functions on an open rectangle R in the xy plane,
and dF2 = dF1 throughout R, then F1 and F2 differ by a constant (i.e. there is a constant C
such that F2(x, y) = F1(x, y) + C for all (x, y) ∈ R).

9. Passing the “Exactness Test” not sufficient for exactness on domain with a
hole. As discussed in class and in the book, if M and N are continuously differentiable
(i.e. have continuous first partial derivatives) on an open rectangle R in the xy plane, and
My = Nx throughout R, then Mdx + Ndy is exact on R. A rectangle is an example of what
mathematicians call a simply connected region: a region with “no holes”. (The intuitive notion
of “no holes” can be given a precise definition, but not in MAP 2302.) It can be shown that on
any simply connected region R, not just rectangles, if M and N are continuously differentiable,
then Mdx+Ndy is exact on R if and only if My = Nx throughout R.

If R is not simply connected, then “My = Nx” is still a necessary condition for exactness
on R, but not a sufficient condition: there are always differentials that satisfy My = Nx, but
that are not exact. You will construct an example in this exercise. The non-simply-connected
region we will use is
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R = {(x, y) ∈ R2 | (x, y) 6= (0, 0)}, (4)

i.e. R2 with the origin removed. This region has a “hole” at the origin. On R, define

M(x, y) =
−y

x2 + y2
, N(x, y) =

x

x2 + y2
. (5)

For the rest of this exercise, “R” always means the region in (4), and “M” and “N” always
mean the functions in (5).

(a) Show that M and N are continuously differentiable on R and that My = Nx throughout
R.

(b) Show that on the set {(x, y) ∈ R2 | x and y are both nonzero} (i.e. R2 with the
coordinate axes removed),

M(x, y)dx+N(x, y)dy = d(tan−1(
y

x
)) = d(− tan−1(

x

y
)).

(c) Define four functions as follows, with the indicated domains.

Fright(x, y) = tan−1(
y

x
), x > 0.

Fupper(x, y) = − tan−1(
x

y
) +

π

2
, y > 0.

Fleft(x, y) = tan−1(
y

x
) + π, x < 0.

Flower(x, y) = − tan−1(
x

y
) +

3π

2
, y < 0.

Show that the following four identities hold:

Fupper(x, y) = Fright(x, y) throughout open quadrant I.

Fleft(x, y) = Fupper(x, y) throughout open quadrant II.

Flower(x, y) = Fleft(x, y) throughout open quadrant III.

Fright(x, y) = Flower(x, y) + 2π throughout open quadrant IV.

Quadrants I–IV are the usual quadrants of the xy plane, and “open quadrant” means “quadrant
with the coordinate axes removed”.

(d) Use the result of exercise 8 (of these non-book problems) to show the following:

• Fupper is the only continuously differentiable function defined on the entire open upper
half-plane {(x, y) ∈ R2 : y > 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fright on open quadrant I.
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• Fleft is the only continuously differentiable function defined on the entire open left half-
plane {(x, y) ∈ R2 : x < 0} whose differential is M dx+N dy on this half-plane and that
coincides with Fupper on open quadrant II.

• Flower is the only continuously differentiable function defined on the entire open lower
half-plane {(x, y) ∈ R2 : y < 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fleft on open quadrant III.

(e) Show that because the identities in part (c) hold, the following definition of a function
F on the domain

{(x, y) ∈ R2 : (x, y) 6= (a, 0) for any a ≥ 0} (6)

(i.e. R2 with the origin and positive x-axis removed) is unambiguous, even though within each
open quadrant the definition gives two different formulas for F :

F (x, y) = Fright(x, y) in open quadrant I.

F (x, y) = Fupper(x, y) if y > 0, i.e. for (x, y) in the open upper half-plane.

F (x, y) = Fleft(x, y) if x < 0, i.e. for (x, y) in the open left half-plane.

F (x, y) = Flower(x, y) if y < 0, i.e. for (x, y) in the open lower half-plane.

F (x, y) = Fright(x, y) + 2π in open quadrant IV.

This function has a simple geometric interpretation: F (x, y) is the polar coordinate
θ ∈ (0, 2π) of the point (x, y).

(f) Use part (d) to show that F is the only differentiable function defined on the domain
(6) whose differential is M dx + N dy on this domain and that coincides with Fright on open
quadrant I.

(g) Show that for all x0 > 0, limy→0+ F (x0, y) = 0, while limy→0− F (x0, y) = 2π.

(h) Use part (g) to show that there is no continuous function defined on the whole domain
R (see (4)) that coincides with F on the domain (6). Then, combine this fact with part (f) to
show that there is no continuously differentiable function on R whose differential is M dx+N dy
on this domain and that coincides with Fupper on open quadrant I.

(i) Use exercise 9 to show that if G is any continuously differentiable function defined on
open quadrant I for which dG = Mdx + Ndy, then, on open quadrant I, G differs from Fupper

only by an additive constant.

(j) Use parts (h) and (i) to show that there is no differentiable function H defined on all
of R for which dH = Mdx + Ndy. Thus, Mdx + Ndy is not exact on R, despite satisfying
My = Nx at every point of R.

Fact: It is accepted practice to write “dθ” for the differential −y
x2+y2

dx+ x
x2+y2

dy on R, even
though there is no differentiable function θ defined on all of R whose differential is dθ!
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