Answers to some of the non-book problems

3. $\{y(\ln y-1)=-x \cos x+\sin x+C\}$. You can't solve explicitly for $y(x)$ in this example.

Writing " $y \ln y-y$ " is just as good as writing " $y(\ln y-1)$ "; neither is clearly a simpler expression than the other.

I would not penalize you for omitting the curly braces in answers like this.
4. $\left\{e^{2 y}\left(\frac{1}{2} y-\frac{1}{4}\right)=x \tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)+C\right\}$. You can't solve explicitly for $y(x)$ in this example.

I might penalize you a small amount for writing "ln $\left|1+x^{2}\right|$ " instead of $\ln \left(1+x^{2}\right)$ in a final answer, since this is an instance of failing to simplify. (Absolute-value symbols around a positive quantity are not needed. Using unnecessary absolute-value symbols in a final answer is a tipoff that the student doesn't fully understand what he/she is writing, and doesn't understand why there are absolute-value symbols in " $\int \frac{1}{x} d x=\ln |x|+C$." It's fine to use unnecessary absolute-value symbols in an initial or intermediate step, but not in a final answer).
6. In this problem it is not possible to solve for y explicitly in terms of x, except for the constant solutions. There are several equivalent ways for writing the general solution in implicit form, two of which are:
(i) $\left\{y^{2}(1-y)=C e^{x^{2}}(1+y) \mid C \in \mathbf{R}\right\}$ and $\{y=-1\}$.
(ii) $\left\{e^{x^{2}}(1+y)=C y^{2}(1-y) \mid C \in \mathbf{R}\right\}$ and $\{y=0\}$ and $\{y=1\}$.
7. (a) $x=2$ (remember that this means the constant function, $x(t)=2$) ; domain $(-\infty, \infty)$.
(b) $x=\frac{2\left(3-e^{4 t}\right)}{3+e^{4 t}}$ (this can be written different ways, e.g. $\left.x=2 \frac{\left.1-\frac{1}{3} e^{4 t}\right)}{1+\frac{1}{3} e^{4 t}}\right)$; domain $(-\infty, \infty)$.
(c) $x=-2$; domain $(-\infty, \infty)$.
(d) $x=\frac{2\left(1+5 e^{4 t}\right)}{1-5 e^{4 t}} ;$ domain $\left(-\frac{1}{4} \ln 5, \infty\right)$.
(e) $x=\frac{2\left(1+5 e^{4 t}\right)}{1-5 e^{4 t}}$; domain $\left(-\infty,-\frac{1}{4} \ln 5\right)$.
8. $y=-\left(3-2 \sqrt{1+x^{2}}\right)^{-1 / 2}$; domain $\left(-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}\right)$.
9. (a) $u=e^{t}\left(1-2 t^{-1}+2 t^{-2}\right)+C t^{-2}$.
(b) $y=(x \ln x-x+C) \sec x$.
(c) $y=\frac{1}{2} x^{3}\left[\left(x^{2}+1\right) \tan ^{-1} x-x\right]+ \begin{cases}C_{1} x^{3}, & x \geq 0, \\ C_{2} x^{3}, & x<0 .\end{cases}$

