Non-book problems

1. Verify that for any nonzero constant b, the function $f(x) = \frac{1}{b} \cosh(bx)$ satisfies the differential equation

$$
\frac{d^2y}{dx^2} - b\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = 0.
$$

(Recall that the function "cosh" is defined by $cosh(x) = \frac{1}{2}(e^x + e^{-x})$.)

2. Consider the equation

$$
x^2 + y^2 = 4.\t\t(1)
$$

On the interval $-2 < x < 2$, there are two continuous functions of x determined by (1). These may be expressed by the equations $y = \sqrt{4-x^2}$ and $y = -\sqrt{4-x^2}$. Show directly, without implicit differentiation, that each of these two equations is an (explicit) solution of the differential equation $x + y dy/dx = 0$. (Note that this is the DE obtained by implicitly differentiating (1) with respect to x, and then dividing by 2 just to simplify.

3. Solve the equation

$$
\frac{dy}{dx} = \frac{x \sin x}{\ln y}
$$

.

.

4. Solve the equation

$$
\frac{dy}{dx} = \frac{\tan^{-1} x}{y e^{2y}}
$$

(Notational reminder: "tan[−]¹" denotes the inverse-tangent function, also called arctangent, and also written "arctan". It does not denote the reciprocal of the tangent function, which is the cotangent function "cot".)

5. Let p be a function that is differentiable on the whole real line, and consider the separable differential equation

$$
\frac{dy}{dx} = p(y). \tag{2}
$$

(Here, the function $q(x)$ that you're used to seeing is just the constant function 1.)

(a) Show that the family of all solutions of (2) is *translation-invariant* in the following sense: if $y = \phi(x)$ is a solution on an interval $a < x < b$, and k is any constant, then $y = \phi(x - k)$ is a solution on the interval $a + k < x < b + k$. (Said another way: horizontally translating the graph of a solution by any amount, you get the graph of another solution.)

(b) Using the Fundamental Existence/Uniqueness theorem for first-order initial-value problems (Theorem 5.1 in "Some note on first-order ODEs", a much-weakened version of which is

Theorem 1 on p. 11 in the textbook), show that for every point $(x_0, y_0) \in \mathbb{R}^2$, the initial-value problem

$$
\frac{dy}{dx} = p(y), \quad y(x_0) = y_0,\tag{3}
$$

has a unique solution on some open interval containing x_0 .

(c) Assume that there are numbers $c < d$ such that $p(c) = p(d) = 0$. Use the "Uniqueness" part of the Fundamental Existence/Uniqueness Theorem to show all of the following. (Once you see how to do any one of these, the other two should be easy.)

- (i) If $y_0 > d$, and ϕ is a solution of (3) defined on an open interval I_{x_0} containing x_0 , then $\phi(x) > d$ for all $x \in I_{x_0}$. (Note: you are not allowed to assume that I_{x_0} is a small interval; you have to show that what's stated is true no matter how large I_{x_0} is. The interval I_{x_0} could even be the whole real line.)
- (ii) If $y_0 < c$, then the solution ϕ of (3) satisfies $\phi(x) < c$ for all $x \in I_{x_0}$. (Same note as above applies.)
- (iii) If $c < y_0 < d$, then the solution ϕ of (3) satisfies $c < \phi(x) < d$ for all $x \in I_{x_0}$. (Same note as above applies.)

6. Solve the differential equation $\frac{dy}{dx} = xy^2(1 - y^2)$.

7. For the differential equation $\frac{dx}{dt} = x^2 - 4$ (whose general solution was found in class, with different names for the variables), solve the initial-value problem with each of the following initial conditions: (a) $x(0) = 2$; (b) $x(0) = 1$; (c) $x(0) = -2$; (d) $x(0) = -3$; (e) $x(-\frac{1}{2})$ $\frac{1}{2} \ln 5$ = 3. In each case, state the domain of the (maximal) solution.

8. Solve the equation

$$
\frac{dy}{dx} = \frac{xy^3}{\sqrt{1+x^2}}
$$

with the initial condition $y(0) = -1$. What is the domain of the (maximal) solution?

- 9. Solve the following differential equations.
	- (a) $\frac{du}{dt} + \frac{2}{t}$ $\frac{2}{t}u = e^t, \ \ t < 0.$ (b) $\frac{dy}{dx} - (\tan x)y = \sec x \ln x, \ \ 0 < x < \pi/2.$ (c) $x^2 \frac{dy}{dx} - 3xy = x^6 \tan^{-1} x$.

10. Show that if F_1 and F_2 are continuously differentiable functions on an open rectangle R in the xy plane, and $dF_2 = dF_1$ throughout R, then F_1 and F_2 differ by a constant (i.e. there is a constant C such that $F_2(x, y) = F_1(x, y) + C$ for all $(x, y) \in R$.

11. Passing the "Exactness Test" not sufficient for exactness on domain with a hole. As discussed in class and in the book, if M and N are continuously differentiable (i.e. have continuous first partial derivatives) on an open rectangle R in the xy plane, and $M_y = N_x$ throughout R, then $M dx + N dy$ is exact on R. A rectangle is an example of what mathematicians call a *simply connected* region: a region with "no holes". (The intuitive notion of "no holes" can be given a precise definition, but not in MAP 2302.) It can be shown that on any simply connected region R , not just rectangles, if M and N are continuously differentiable, then $M dx + N dy$ is exact on R if and only if $M_y = N_x$ throughout R.

If R is not simply connected, then " $M_y = N_x$ " is still a *necessary* condition for exactness on R, but not a *sufficient* condition: there are always differentials that satisfy $M_y = N_x$, but that are not exact. You will construct an example in this exercise. The non-simply-connected region we will use is

$$
R = \{(x, y) \in \mathbf{R}^2 \mid (x, y) \neq (0, 0)\},\tag{4}
$$

i.e. \mathbb{R}^2 with the origin removed. This region has a "hole" at the origin. On R, define

$$
M(x,y) = \frac{-y}{x^2 + y^2}, \quad N(x,y) = \frac{x}{x^2 + y^2}.
$$
 (5)

For the rest of this exercise, "R" always means the region in (4) , and "M" and "N" always mean the functions in (5).

(a) Show that M and N are continuously differentiable on R and that $M_y = N_x$ throughout R.

(b) Show that on the set $\{(x, y) \in \mathbb{R}^2 \mid x \text{ and } y \text{ are both nonzero}\}\)$ (i.e. \mathbb{R}^2 with the coordinate axes removed),

$$
M(x, y)dx + N(x, y)dy = d(\tan^{-1}(\frac{y}{x})) = d(-\tan^{-1}(\frac{x}{y})).
$$

(c) Define four functions as follows, with the indicated domains.

$$
F_{\text{right}}(x, y) = \tan^{-1}(\frac{y}{x}), \quad x > 0.
$$

\n
$$
F_{\text{upper}}(x, y) = -\tan^{-1}(\frac{x}{y}) + \frac{\pi}{2}, \quad y > 0.
$$

\n
$$
F_{\text{left}}(x, y) = \tan^{-1}(\frac{y}{x}) + \pi, \quad x < 0.
$$

\n
$$
F_{\text{lower}}(x, y) = -\tan^{-1}(\frac{x}{y}) + \frac{3\pi}{2}, \quad y < 0.
$$

Show that the following four identities hold:

 $F_{\text{upper}}(x, y) = F_{\text{right}}(x, y)$ throughout open quadrant I. $F_{\text{left}}(x, y) = F_{\text{upper}}(x, y)$ throughout open quadrant II. $F_{\text{lower}}(x, y) = F_{\text{left}}(x, y)$ throughout open quadrant III. $F_{\text{right}}(x, y) = F_{\text{lower}}(x, y) + 2\pi$ throughout open quadrant IV.

Quadrants I–IV are the usual quadrants of the xy plane, and "open quadrant" means "quadrant with the coordinate axes removed".

(d) Use the result of exercise 9 (of these non-book problems) to show the following:

- F_{upper} is the *only* continuously differentiable function defined on the entire open upper half-plane $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ whose differential is $M dx + N dy$ on this half-plane and that coincides with F_{right} on open quadrant I.
- F_{left} is the *only* continuously differentiable function defined on the entire open left halfplane $\{(x, y) \in \mathbb{R}^2 : x < 0\}$ whose differential is $M dx + N dy$ on this half-plane and that coincides with F_{upper} on open quadrant II.
- F_{lower} is the *only* continuously differentiable function defined on the entire open lower half-plane $\{(x, y) \in \mathbb{R}^2 : y < 0\}$ whose differential is $M dx + N dy$ on this half-plane and that coincides with F_{left} on open quadrant III.

(e) Show that because the identities in part (c) hold, the following definition of a function F on the domain

$$
\{(x, y) \in \mathbf{R}^2 : (x, y) \neq (a, 0) \text{ for any } a \ge 0\}
$$
 (6)

(i.e. \mathbb{R}^2 with the origin and positive x-axis removed) is unambiguous, even though within each open quadrant the definition gives two different formulas for F :

 $F(x, y) = F_{\text{right}}(x, y)$ in open quadrant I. $F(x, y) = F_{\text{upper}}(x, y)$ if $y > 0$, i.e. for (x, y) in the open upper half-plane. $F(x, y) = F_{\text{left}}(x, y)$ if $x < 0$, i.e. for (x, y) in the open left half-plane. $F(x, y) = F_{lower}(x, y)$ if $y < 0$, i.e. for (x, y) in the open lower half-plane. $F(x, y) = F_{\text{right}}(x, y) + 2\pi$ in open quadrant IV.

This function has a simple geometric interpretation: $F(x, y)$ is the polar coordinate $\theta \in (0, 2\pi)$ of the point (x, y) .

(f) Use part (d) to show that F is the *only* differentiable function defined on the domain (6) whose differential is $M dx + N dy$ on this domain and that coincides with F_{right} on open quadrant I.

(g) Show that for all $x_0 > 0$, $\lim_{y \to 0+} F(x_0, y) = 0$, while $\lim_{y \to 0-} F(x_0, y) = 2\pi$.

(h) Use part (g) to show that there is no continuous function defined on the whole domain R (see (4)) that coincides with F on the domain (6). Then, combine this fact with part (f) to show that there is no continuously differentiable function on R whose differential is $M dx + N dy$ on this domain and that coincides with F_{upper} on open quadrant I.

(i) Use exercise 9 to show that if G is any continuously differentiable function defined on open quadrant I for which $dG = M dx + N dy$, then, on open quadrant I, G differs from F_{upper} only by an additive constant.

(j) Use parts (h) and (i) to show that there is no differentiable function H defined on all of R for which $dH = M dx + N dy$. Thus, $M dx + N dy$ is not exact on R, despite satisfying $M_y = N_x$ at every point of R.

Fact: It is accepted practice to write " $d\theta$ " for the differential $\frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}$ $\frac{x}{x^2+y^2}$ dy on R , even though there is no differentiable function θ defined on all of R whose differential is $d\theta$!

12. As remarked in the textbook in the paragraph that starts at the bottom of p. 194, solving a Cauchy-Euler (pronounced "Co-she Oiler") equation on the domain-interval $(0, \infty)$ gives us a way to solve it on the domain-interval $(-\infty, 0)$ as well. In this problem we amplify the book's remark and consider some examples.

(a) Fix numbers a, b, c (with $a \neq 0$) and consider the second-order homogeneous Cauchy-Euler equation

$$
at^2\frac{d^2y}{dt^2} + bt\frac{dy}{dt} + cy = 0.
$$
\n(7)

Using the Chain Rule and the substitution $t = -u$, show that (7) for $t < 0$ is equivalent to the equation

$$
au^2\frac{d^2z}{du^2} + bu\frac{dz}{du} + cz = 0\tag{8}
$$

for $u > 0$, where $z(u) = y(t) = z(-t)$. Except for the names of the variables, equations (7) and (8) are the same. Use this to show that if $t \mapsto \phi(t)$ is a solution of $at^2y'' + bty' + cy = 0$ on the interval $\{t > 0\}$, then $t \mapsto \phi(-t)$ is a solution of the same DE on the interval $\{t < 0\}$, and vice-versa. (See this footnote¹ for the meaning of " \rightarrow ".) Thus show that if $t \mapsto y_{\text{gen}}(t)$ is the general solution of (7) on the interval $\{t > 0\}$, then $t \mapsto y_{\text{gen}}(|t|)$ is the general solution of (7) on the interval $\{t < 0\}$, as well as on the interval $\{t > 0\}$.

(b) Find the general solution $t \mapsto y(t)$ of

¹The symbol " \rightarrow " is read "goes to" or (in more advanced classes) "maps to". It is simply a way of giving a name, possibly temporarily, to the domain-variable of a function, without having to name the function. For example, " $t \mapsto \phi(-t)$ " is a compact way of writing "the function ψ defined by $\psi(t) = \phi(-t)$ ", or "the function g defined by $g(x) = \phi(-x)$ ".

$$
6t^2y'' + ty' + y = 0 \tag{9}
$$

on the interval $\{t > 0\}$. Then, using part (a) above, find the general solution of (9) on the interval $\{t < 0\}.$

(c) Find the general solution $t \mapsto y(t)$ of

$$
t^2y'' + 5ty' + 4y = 0\tag{10}
$$

on the interval $\{t > 0\}$. Then, using part (a) above, find the general solution of (10) on the interval $\{t < 0\}$. (Remember that, in all these problems, since the DE names t as its independent variable, your answer must be expressed purely in terms of t , not wholly or partly in terms of any other variable you used along the way.)

(d) Find the general solution $t \mapsto y(t)$ of

$$
t^2y'' + 2ty' + y = 0 \tag{11}
$$

on the interval $\{t > 0\}$. Then, using part (a) above, find the general solution of (11) on the interval $\{t < 0\}.$