
Non-book problems

1. Verify that for any nonzero constant b, the function f(x) = 1
b

cosh(bx) satisfies the differential
equation

d2y

dx2
− b

√
1 +

(
dy

dx

)2

= 0.

(Recall that the function “cosh” is defined by cosh(x) = 1
2
(ex + e−x).)

2. Consider the equation
x2 + y2 = 4. (1)

On the interval −2 < x < 2, there are two continuous functions of x determined by (1).
These may be expressed by the equations y =

√
4− x2 and y = −

√
4− x2. Show directly,

without implicit differentiation, that each of these two equations is an (explicit) solution of
the differential equation x + y dy/dx = 0. (Note that this is the DE obtained by implicitly
differentiating (1) with respect to x, and then dividing by 2 just to simplify.)

3. Solve the equation

dy

dx
=
x sinx

ln y
.

4. Solve the equation

dy

dx
=

tan−1 x

ye2y
.

(Notational reminder: “tan−1” denotes the inverse-tangent function, also called arctangent, and
also written “arctan”. It does not denote the reciprocal of the tangent function, which is the
cotangent function “cot”.)

5. Let p be a function that is differentiable on the whole real line, and consider the separable
differential equation

dy

dx
= p(y). (2)

(Here, the function g(x) that you’re used to seeing is just the constant function 1.)

(a) Show that the family of all solutions of (2) is translation-invariant in the following sense:
if y = φ(x) is a solution on an interval a < x < b, and k is any constant, then y = φ(x− k) is
a solution on the interval a + k < x < b + k. (Said another way: horizontally translating the
graph of a solution by any amount, you get the graph of another solution.)

(b) Using the Fundamental Existence/Uniqueness theorem for first-order initial-value prob-
lems (Theorem 5.1 in “Some note on first-order ODEs”, a much-weakened version of which is
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Theorem 1 on p. 11 in the textbook), show that for every point (x0, y0) ∈ R2, the initial-value
problem

dy

dx
= p(y), y(x0) = y0, (3)

has a unique solution on some open interval containing x0.

(c) Assume that there are numbers c < d such that p(c) = p(d) = 0. Use the “Uniqueness”
part of the Fundamental Existence/Uniqueness Theorem to show all of the following. (Once
you see how to do any one of these, the other two should be easy.)

• (i) If y0 > d, and φ is a solution of (3) defined on an open interval Ix0 containing x0, then
φ(x) > d for all x ∈ Ix0 . (Note: you are not allowed to assume that Ix0 is a small interval;
you have to show that what’s stated is true no matter how large Ix0 is. The interval Ix0

could even be the whole real line.)

• (ii) If y0 < c, then the solution φ of (3) satisfies φ(x) < c for all x ∈ Ix0 . (Same note as
above applies.)

• (iii) If c < y0 < d, then the solution φ of (3) satisfies c < φ(x) < d for all x ∈ Ix0 . (Same
note as above applies.)

6. Solve the differential equation dy
dx

= xy2(1− y2).

7. For the differential equation dx
dt

= x2 − 4 (whose general solution was found in class, with
different names for the variables), solve the initial-value problem with each of the following
initial conditions: (a) x(0) = 2; (b) x(0) = 1; (c) x(0) = −2; (d) x(0) = −3; (e) x(−1

2
ln 5) = 3.

In each case, state the domain of the (maximal) solution.

8. Solve the equation
dy

dx
=

xy3√
1 + x2

with the initial condition y(0) = −1. What is the domain of the (maximal) solution?

9. Solve the following differential equations.
(a) du

dt
+ 2

t
u = et, t < 0.

(b) dy
dx
− (tanx)y = secx lnx, 0 < x < π/2.

(c) x2 dy
dx
− 3xy = x6 tan−1 x.

10. Show that if F1 and F2 are continuously differentiable functions on an open rectangle R in
the xy plane, and dF2 = dF1 throughout R, then F1 and F2 differ by a constant (i.e. there is a
constant C such that F2(x, y) = F1(x, y) + C for all (x, y) ∈ R).
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11. Passing the “Exactness Test” not sufficient for exactness on domain with a
hole. As discussed in class and in the book, if M and N are continuously differentiable
(i.e. have continuous first partial derivatives) on an open rectangle R in the xy plane, and
My = Nx throughout R, then Mdx + Ndy is exact on R. A rectangle is an example of what
mathematicians call a simply connected region: a region with “no holes”. (The intuitive notion
of “no holes” can be given a precise definition, but not in MAP 2302.) It can be shown that on
any simply connected region R, not just rectangles, if M and N are continuously differentiable,
then Mdx+Ndy is exact on R if and only if My = Nx throughout R.

If R is not simply connected, then “My = Nx” is still a necessary condition for exactness
on R, but not a sufficient condition: there are always differentials that satisfy My = Nx, but
that are not exact. You will construct an example in this exercise. The non-simply-connected
region we will use is

R = {(x, y) ∈ R2 | (x, y) 6= (0, 0)}, (4)

i.e. R2 with the origin removed. This region has a “hole” at the origin. On R, define

M(x, y) =
−y

x2 + y2
, N(x, y) =

x

x2 + y2
. (5)

For the rest of this exercise, “R” always means the region in (4), and “M” and “N” always
mean the functions in (5).

(a) Show that M and N are continuously differentiable on R and that My = Nx throughout
R.

(b) Show that on the set {(x, y) ∈ R2 | x and y are both nonzero} (i.e. R2 with the
coordinate axes removed),

M(x, y)dx+N(x, y)dy = d(tan−1(
y

x
)) = d(− tan−1(

x

y
)).

(c) Define four functions as follows, with the indicated domains.

Fright(x, y) = tan−1(
y

x
), x > 0.

Fupper(x, y) = − tan−1(
x

y
) +

π

2
, y > 0.

Fleft(x, y) = tan−1(
y

x
) + π, x < 0.

Flower(x, y) = − tan−1(
x

y
) +

3π

2
, y < 0.

Show that the following four identities hold:
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Fupper(x, y) = Fright(x, y) throughout open quadrant I.

Fleft(x, y) = Fupper(x, y) throughout open quadrant II.

Flower(x, y) = Fleft(x, y) throughout open quadrant III.

Fright(x, y) = Flower(x, y) + 2π throughout open quadrant IV.

Quadrants I–IV are the usual quadrants of the xy plane, and “open quadrant” means “quadrant
with the coordinate axes removed”.

(d) Use the result of exercise 9 (of these non-book problems) to show the following:

• Fupper is the only continuously differentiable function defined on the entire open upper
half-plane {(x, y) ∈ R2 : y > 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fright on open quadrant I.

• Fleft is the only continuously differentiable function defined on the entire open left half-
plane {(x, y) ∈ R2 : x < 0} whose differential is M dx+N dy on this half-plane and that
coincides with Fupper on open quadrant II.

• Flower is the only continuously differentiable function defined on the entire open lower
half-plane {(x, y) ∈ R2 : y < 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fleft on open quadrant III.

(e) Show that because the identities in part (c) hold, the following definition of a function
F on the domain

{(x, y) ∈ R2 : (x, y) 6= (a, 0) for any a ≥ 0} (6)

(i.e. R2 with the origin and positive x-axis removed) is unambiguous, even though within each
open quadrant the definition gives two different formulas for F :

F (x, y) = Fright(x, y) in open quadrant I.

F (x, y) = Fupper(x, y) if y > 0, i.e. for (x, y) in the open upper half-plane.

F (x, y) = Fleft(x, y) if x < 0, i.e. for (x, y) in the open left half-plane.

F (x, y) = Flower(x, y) if y < 0, i.e. for (x, y) in the open lower half-plane.

F (x, y) = Fright(x, y) + 2π in open quadrant IV.

This function has a simple geometric interpretation: F (x, y) is the polar coordinate
θ ∈ (0, 2π) of the point (x, y).

(f) Use part (d) to show that F is the only differentiable function defined on the domain
(6) whose differential is M dx + N dy on this domain and that coincides with Fright on open
quadrant I.
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(g) Show that for all x0 > 0, limy→0+ F (x0, y) = 0, while limy→0− F (x0, y) = 2π.

(h) Use part (g) to show that there is no continuous function defined on the whole domain
R (see (4)) that coincides with F on the domain (6). Then, combine this fact with part (f) to
show that there is no continuously differentiable function on R whose differential is M dx+N dy
on this domain and that coincides with Fupper on open quadrant I.

(i) Use exercise 9 to show that if G is any continuously differentiable function defined on
open quadrant I for which dG = Mdx + Ndy, then, on open quadrant I, G differs from Fupper

only by an additive constant.

(j) Use parts (h) and (i) to show that there is no differentiable function H defined on all
of R for which dH = Mdx + Ndy. Thus, Mdx + Ndy is not exact on R, despite satisfying
My = Nx at every point of R.

Fact: It is accepted practice to write “dθ” for the differential −y
x2+y2

dx+ x
x2+y2

dy on R, even
though there is no differentiable function θ defined on all of R whose differential is dθ!

12. As remarked in the textbook in the paragraph that starts at the bottom of p. 194, solving
a Cauchy-Euler (pronounced “Co-she Oiler”) equation on the domain-interval (0,∞) gives us a
way to solve it on the domain-interval (−∞, 0) as well. In this problem we amplify the book’s
remark and consider some examples.

(a) Fix numbers a, b, c (with a 6= 0) and consider the second-order homogeneous Cauchy-
Euler equation

at2
d2y

dt2
+ bt

dy

dt
+ cy = 0. (7)

Using the Chain Rule and the substitution t = −u, show that (7) for t < 0 is equivalent
to the equation

au2
d2z

du2
+ bu

dz

du
+ cz = 0 (8)

for u > 0, where z(u) = y(t) = z(−t). Except for the names of the variables, equations (7) and
(8) are the same. Use this to show that if t 7→ φ(t) is a solution of at2y′′ + bty′ + cy = 0 on
the interval {t > 0}, then t 7→ φ(−t) is a solution of the same DE on the interval {t < 0}, and
vice-versa. (See this footnote1 for the meaning of “7→”.) Thus show that if t 7→ ygen(t) is the
general solution of (7) on the interval {t > 0}, then t 7→ ygen(|t|) is the general solution of (7)
on the interval {t < 0}, as well as on the interval {t > 0}.

(b) Find the general solution t 7→ y(t) of

1The symbol “ 7→” is read “goes to” or (in more advanced classes) “maps to”. It is simply a way of giving
a name, possibly temporarily, to the domain-variable of a function, without having to name the function. For
example, “t 7→ φ(−t)” is a compact way of writing “the function ψ defined by ψ(t) = φ(−t)”, or “the function
g defined by g(x) = φ(−x)”.
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6t2y′′ + ty′ + y = 0 (9)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (9) on the
interval {t < 0}.

(c) Find the general solution t 7→ y(t) of

t2y′′ + 5ty′ + 4y = 0 (10)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (10) on
the interval {t < 0}. (Remember that, in all these problems, since the DE names t as its
independent variable, your answer must be expressed purely in terms of t, not wholly or partly
in terms of any other variable you used along the way.)

(d) Find the general solution t 7→ y(t) of

t2y′′ + 2ty′ + y = 0 (11)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (11) on the
interval {t < 0}.
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