CHAPTER

1 Introduction

- 1.1 Background

In the sciences and engineering, mathematical models are developed to aid in the understanding
of physical phenomena. These models often yield an equation that contains some derivatives
of an unknown function. Such an equation is called a differential equation. Two examples of
models developed in calculus are the free fall of a body and the decay of a radioactive substance,

In the case of free fall, an object is released from a certain height above the ground and
falls under the force of gravity." Newton’s second law, which states that an object’s mass times
its acceleration equals the total force acting on it, can be applied to the falling object. This
leads to the equation (see Figure 1.1)
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where m is the mass of the object, 4 is the height above the ground, d%h/di* is its acceleration, g
is the {constant) gravitational acceleration, and —mg is the force due to gravity. This is a differ-
ential equation containing the second derivative of the unknown height / as a function of time.

Fortunately, the above equation is easy to solve for /. All we have to do is divide by m and
integrate twice with respect to t. That is,

&h_
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L t+¢

—of?
h = h(1) =%+c,t+c2.

Figure 1.1 Apple in free fafl

'We are assuming here that gravity is the only force acting on the object and that this force is constant. More general
models would take into account other forces, such as air resistance,
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We will see that the constants of integration, ¢, and ¢y, are determined if we know the initial
height and the initial velocity of the object. We then have a formula for the height of the object
at time ¢.

In the case of radioactive decay (Figure 1.2), we begin from the premise that the rate of
decay is proportional to the amount of radioactive substance present. This leads to the equation

dA

—=-kA, k>0,

dt
where A(>0) is the unknown amount of radioactive substance present at time ¢ and k is the
proportionality constant. To solve this differential equation, we rewrite it in the form

1
—dA = —kd
AdA t

and integrate to obtain

1
fAdA_f kdt

InA+C, = —kt+C,.
Solving for A yields
A=A(t) = et =g 00 = Ce™™,

where C is the combination of integration constants ¢~ €', The value of C, as we will see later,
is determined if the initial amount of radioactive substance is given. We then have a formula
for the amount of radioactive substance at any future time .

Even though the above examples were easily solved by methods learned in calculus, they
do give us some insight into the study of differential equations in general. First, notice that
the solution of a differential equation is a function, like A(t) or A(t), not merely a number.
Second, integration' is an important tool in solving differential equations (not surprisingly?).
Third, we cannot expect to get a unique solution to a differential equation, since there will
be arbitrary “constants of integration.” The second derivative 4% /ds? in the free-fall equation
gave rise to two constants, ¢; and c¢,, and the first derivative in the decay equation gave rise,
ultimately, to one constant, C.

Whenever a mathematical model involves the rate of change of one variable with respect
to another, a differential equation is apt to appear. Unfortunately, in contrast to the examples for

free fall and radioactive decay, the differential equation may be very complicated and difficult
to analyze.

Figure 1.2 Radioactive decay

———————

"For a review of integration techniques, see Appendix A.
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Figure 1.3 Schematic for a series RLC circuit

Differential equations arise in a variety of subject areas, including not only the physi-
cal sciences but also such diverse fields as economics, medicine, psychology, and operations
research. We now list a few specific examples.

1. In banking practice, if P(¢) is the number of dollars in a savings bank account that
pays a yearly interest rate of r % compounded continuously, then P satisfies the dif-
ferential equation

dP r
1 —_—=— ti .
(1) o 100I:', in years
2. A classic application of differential equations is found in the study of an electric cir-
cuit consisting of a resistor, an inductor, and a capacitor driven by an electromotive
force (see Figure 1.3). Here an application of Kirchhoff's laws' leads to the equation

dq dq 1

%) L—+R—+—=q=E(1),

o gt R e = E0)
where L is the inductance, R is the resistance, C is the capacitance, E(¢) is the elec-
tromotive force, g(t) is the charge on the capacitor, and { is the time.

3. In psychology, one model of the learning of 2 task involves the equation

3) dy/dt _ 2
PR(I-yP VA

Here the variable y represents the learner’s skill level as a function of time 1. The con-

stants p and n depend on the individual learner and the nature of the task.

4. In the study of vibrating strings and the propagation of waves, we find the partial dif-
ferential equation

au ,azu_ "
L S R

where f represents time, x the location along the siring, ¢ the wave speed, and u the
displacement of the string, which is a function of time and location.

*We will discuss KirchhefP's laws in Section 3.5.

*Historical Footnote: This partial differential equation was first discovered by Jean le Rond d’ Alembert (1717-1783)
in 1747.
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i To begin our study of differential equations, we need some common terminclogy. If an
I‘ equation involves the derivative of one variable with respect to another, then the former is
4 called a dependent variable and the latter an independent variable. Thus, in the equation

i dx  dx
| 5 — +ta— + kx =0,
I\' L
t is the independent variable and x is the dependent variable. We refer to a and k as coefficients
in equation {5). In the equation

® 5_5_1 2y,

x and y are independent variables and u is the dependent variable.

A differential equation involving only ordinary derivatives with respect to a single indepen-
dent variable is called an ordinary differential equation. A differential equation involving partial
derivatives with respect to more than one independent variable is a partial differential equation.
Equation (5) is an ordinary differential equation, and equation (6) is a partial differential equation.

The order of a differential equation is the order of the highest-order derivatives present in the
equation. Equation (5) is a second-order equation because d%x/df? is the highest-order derivative
present. Equation (6) is a first-order equation because only first-order partial derivatives occur,

It will be useful to classify ordinary differential equations as being either linear or nonlin-
ear. Remember that lines (in two dimensions) and planes (in three dimensions) are especially
easy to visualize, when compared to nonlinear objects such as cubic curves or quadric surfaces.
For example, all the points on a line can be found if we know just two of them. Correspond-
ingly, linear differential equations are more amenable to solution than nonlinear ones. Observe
that the equations for lines ax 4+ by = ¢ and planes ax -+ by + cz = d have the feature that the
variables appear in additive combinations of their first powers only. By analogy a linear differ-
ential equation is one in which the dependent variable y and its derivatives appear in additive
i combinations of their first powers.

More precisely, a differential equation is linear if it has the format

n. n—1

d d
(7 a,(x) —%+a,,_1(x) - jl’ + e tay(x )ﬁ*’ﬂo(-")y:f"(x)’

— e T —
e i e 2 i A e

where a,(x), a,_1(x), ..., dy{x) and F(x) depend only on the independent variable x. The
additive combinations are permitted to have multipliers {coefficients) that depend on x; no
restrictions are made on the nature of this x-dependence. If an ordinary differential equation is
not linear, then we call it nonlinear. For example,

Ly dzy 3

f | R

i 4 { is a nonlinear second-order ordinary differential equation because of the y* term, whereas

; dx
4 L P—=7r+
? | dt IJ X
i is linear (despite the 1* terms). The equation
dy_ & _
_ 7 " ¥, = cosx 3

is nonlinear because of the y dy/dx term.

B Ll g
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Although the majority of equations one is likely to encounter in practice fall into the
nonlinear category, knowing how to deal with the simpler linear equations is an important first
step (just as tangent lines help our understanding of complicated curves by providing local

approximations).

In Problems 1-12, a differential equation is given along with
the field or problem area in which it arises. Classify each as
an ordinary differential equation (ODE) or a partial differen-
tial equation (PDE), give the order, and indicate the indepen-
dent and dependent variables. If the equation is an ordinary
differential equation, indicate whether the equation is linear
or nonlinear.

1

2.

2
5%54-4% 4+ 9x = 2cos 3t

(mechanical vibrations, electrical circuits, seismology)

d% dy _
P ?_xdr-!-Zy—O

(Hermite’s equation, quantum-mechanical harmonic
oscillator)

E}_&_ ¥(2-3x)

dx  x(1-3y)

(competition between two species, ecology)
2 2

Su 8o

ar? dy*

(Laplace’s equation, potential theory, electricity, heat,
aerodynamics)

dy\? )
i+ o = C, where C is a constant

(brachistochrone problem,' calculus of variations)

—

@ k(4 — x) (1~ x), where k is a constant

(chemical reaction rates)

dp

= kp{P ~ p), where k and P are constants

1.
i _Hmarical Foomore:
_S_ith'duwn which a

. Uogistic curve, epidemiology, economics)

™ the followip

9.

10,

11.

12.

d d
VIS Sen o

r
(Kidder's equation, flow of gases through a porous
medium)

d
x—2y+

D y=0
al  dx 7
(aerodynamics, stress analysis)

d’y
SEF =x(l—-x)
(deflection of beams)
2

il = N lﬁﬁ- kN, where k is a constant
rar
{nuclear fission)
dYy 5, Ay
——=0. -— —_— =
PE) 0.1(1 —-y%) o 9y =10

(van der Pol’s equation, triode vacuum mbe)

In Problems 13-16, write a differential equation that fits the
physical description.

13

14.

15,

16.

17,

The rate of change of the population p of bactetia at
time ¢ is proportional to the population at time .

The velocity at time  of a particle moving along a straight
line is proportional to the fourth power of its position x.

The rate of change in the temperature T of coffee at
time ¢ is proportional to the difference between the tem-
perature M of the air at time ¢ and the temperature of the
coffee at time 1.

The rate of change of the mass A of salt at time ¢ is
proportional to the square of the mass of salt present
at time £,

Drag Race. Two drivers, Alison and Kevin, are par-
ticipating in a drag race. Beginning from a standing start,
they each proceed with a constant acceleration. Alison
cavers the last 1/4 of the distance in 3 seconds, whereas
Kevin covers the last 1/3 of the distance in 4 seconds.
Who wins and by how much time?

In 1630 Galileo formulated the brachistochrone problem (Bpayioros = shortest, ypovos = time), that is, to determine a

particle witl fall from one given point to another in the shortest time. It was reproposed by John Bemnoulli in 1696 and solved
E year.
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1.2 Solutions and Initial Value Problems B

An nth-order ordinary differential equation is an equality relating the independent variable i
to the nth derivative (and usually lower-order derivatives as well) of the dependent variable. i
Examples are 1

2}'

F + xa +y = x° (second-order, x independent, y dependent)

e —— e T———

d
l1- (%) — y = 0 (second-order, t independent, y dependent)

a‘f xt (fourth-order, ¢ independent, x dependent). -,
Thus, a general form for an ath-order equation with x independent, y dependent, can be
expressed as

dy d"y)_
(1) F(x’y'dx"”’dx” =0,

where F is a function that depends on x, y, and the derivatives of y up to order n; that is, on x,
¥ ..., d"/dx". We assume that the equation holds for all x in an open interval { (g <x < b,
where a or b could be infinite). In many cases we can isolate the highest-order term d"y/dx"
and write equation (1) as

dy dy d"-‘y) B
@ == (x,y,dx,...,dxn_l , L B

s

which is often preferable to (1) for theoretical and computational purposes.

Explicit Solution §

Definition 1. A function ¢{x) that when substituted for y in equation (1) [or (2)]
satisfies the equation for all x in the interval / is called an explicit solution to the
equation on I.

A -

} = ENE AT :a.
Example 1  Show that ¢p(x) = x* — x7! is an explicit solution to the linear equation _
e 1l 3 =0,
i g @B P
‘ = 3 but ¢r(x) = £ is not.
]
’» _ Solution The functions ¢(x) = x> ~x71, ¢'(x) = 2x+ 72, and ¢"(x) = 2 — 2x™? are defined for

all x # 0. Substitution of ¢(x) for y in equation (3) gives

! (2-2) —%(xz—x") =(2-2)-(2-u) =0.




Example 2

Solution

Example 3

Solution
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Since this is valid for any x # 0, the function ¢{x) = x2 — x~! is an explicit solution to (3) on
(=, 0) and also on (0, =}.
For t(x) = x° we have ¢ (x) = 3% ¢"(x) = 6x, and substitution into (3) gives

&—;f=m=o,

which is valid only at the point x = 0 and not on an interval. Hence (x) is not a solution. 4

Show that for any choice of the constants ¢, and c,, the function

d(x) = ¢ + cre¥
is an explicit solution to the linear equation
@ Yy-y-2=0.
We compute ¢'(x} = —cie™ + 2c2¢¥ and ¢"(x) = ¢,¢™ + dcye™. Substitution of ¢, ¢,
and ¢" fory, y', and " in equation (4) yields

(1™ + dcpe™) = (—cre™™ + 2c,6%) — 2( e + 02e¥)

= (¢;+ ¢, = 2¢; )+ (dey = 26, — 20,)e¥ = 0.

Since equality holds for all x in (—o, ®), then ¢(x) = cje™ + c2¢> is an explicit solution to
(4) on the interval (=, ) for any choice of the constants ¢ and ¢;. ¢

As we will see in Chapter 2, the methods for solving differential equations do not always
yield an explicit solution for the equation. We may have to settle for a solution that is defined
implicitly. Consider the following example.

Show that the relation
) Y- +8=0

implicitly defines a solution to the nonlinear equation

dy 3x
—_— = ——
de 2y

(6)

on the interval (2, ®).

When we solve (5) for y, we obtain y = £ Vx® — 8. Let's try ¢p(x) = V' -8 tosee if it
is an explicit solution. Since dg/dx = 3x?/ (2\/ —8), both ¢ and dqb/dx are defined on
(2, ). Substituting them into (6) yields

K 3x?

V-8 2(Ve-8)

which is indeed valid for all x in (2, ®}. [You can check that ¢(x) = —Vx® — 8 is also an
explicit solution to (6).]
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Definition 2. A relation G(x,y) = 0is said to be an implicit solution to equation (1)

i
|
E a8 Chapter 1 Introduction
: on the interval I if it defines one or more explicit solutions on /. :

T ———————

Example 4 Show that
N x+y+e? =10

is an implicit solution to the nonlinear equation
: d
i (8) (qun§+1+yﬂ=0.

Solution  First, we observe that we are unable to solve (7) directly for y in terms of x alone. However, for
(7) to hold, we realize that any change in x requires a change in y, so we expect the relation (7)
to define implicitly at least one function y(x). This is difficult to show directly but can be rigor-
ously verified using the implicit function theorem' of advanced calculus, which guarantees
that such a function y(x) exists that is also differentiable (see Problem 30),

Once we know that y is a differentiable function of x, we can use the technique of implicit
differentiation. Indeed, from (7) we obtain on differentiating with respect to x and applying the
product and chain rules,

4 d dy ( dy)
i e M =1+—+e?y+x—) =
dx(x+y+e )=1 R $ At s 0

a8 or

dy
l 1+ =+ 1+ =0,
. (1+xe™) ye

; which is identical to the differential equation (8). Thus, relation (7) is an implicit solution on
1 some interval guaranteed by the implicit function theorem. ¢ '

Example 5 Verify that for every constant C the relation 4x2 — y* = Cisan implicit solution to

d
= ©) yﬁ-#=&

Graph the solution curves for C = 0, +1, £ 4. (We call the collection of all such solutions a

1) one-parameter family of solutions.)
p‘k I E Solution  When we implicitly differentiate the equation 4x* — y* = C with respect to x, we find
St gxe 2@ g,
; dx

o

o 'See Vector Cafculus, 6ih ed, by J. E. Marsden and A, J. Tromba (Freeman, San Francisca, 2013),




9

Figure 1.4 Implicit solutions 4x2 — * = C

which is equivalent to (9). In Figure 1.4 we have sketched the implicit solutions for
C =0, £ 1, *4. The curves are hyperbolas with common asymptotes y = = 2x. Notice that
the implicit solution curves (with C arbitrary) fill the entire plane and are nonintersecting for
C # 0. For C = 0, the implicit solution gives rise to the two explicit solutions ¥ = 2x and
Y = —2x, both of which pass through the origin. ¢

For brevity we hereafter use the term solution to mean either an explicit or an implicit
solution.

In the beginning of Section 1.1, we saw that the solution of the second-order free-fall
equation invoked two arbitrary constants of integration ¢, c,:

2
—af
h(r) =—-—§ +etto,

whereas the solution of the first-order radioactive decay equation contained a single constant C:
A(t) = Ce™,

Itis clear that integration of the simple fourth-order equation

brings in four undetermined constants:

¥(x) = e + o +opx 4 ¢y,

It will be shown later in the text that in general the methods for solving nth-order differential
equations evoke n arbitrary constants. In most cases, we will be able to evaluate these constants
if we know » initial values y(x,), y' (%), . . ., ¥y (x).

e ol ol imeie e e i
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Initial Value Problem | :
Definition 3. By an initial value problem for an nth-order differential equatidn '
dy a'"y)
F IS, =0 B
(‘ Ve
. we mean: Find a solution to the differentiat equation on an interval / that satisfies at Xo b 4
the n initial conditions |
b
¥(x0) = y,
dy
dx(xO) = yl * ,
=1
J
I' F(Iﬂ) = Ya~1»
|
i where xo & [ and yy, yy, . . ., y,_, are given constants.
In the case of a first-order equation, the initial conditions reduce to the single requirement
¥(x) = 3.
| and in the case of a second-order equation, the initial conditions have the form
dy o
y(xa) = o, 2 (o) =
The terminology initial conditions comes from mechanics, where the independent variable
X represents time and is customarily symbolized as ¢. Then if o Is the starting time, y(fy) = y,
represents the initial location of an object and ¥'(%) gives its initial velocity. A
{ *
Example 6  Show that @(x) = sin.x — cos x is a solution to the initial value problem "
an 2y, ©=-1, 2y
a2 )T Y " dx ’ 3
| Solution  Observe that ¢(x) = sin x — cos x,d/dx = cos x + sin x, and d’p/dx* = ~sinx + cos x _
] are all defined on (—, @ ). Substituting into the differential equation gives i
b (—sinx+cosx)+(sinx-—cosx) =0, E
¢ which holds for all x € (—o, @ ). Hence, ¢(x) is a solution to the differential equation in 4
by (10) on (=, ). When we check the initial conditions, we find -
» ! ¢(0) = sin0~cos0 = —1,
| :
; d !
i ;3(0) =cosO0+sin0 =1, 4
| which meets the requirements of ( 10). Therefore, ¢(x) is a solution to the given initial value 4
problem. ¢ g
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Example 7 Asshown in Example 2, the function ¢(x) = c;e™* + c,¢2* is a solution to

for any choice of the constants c; and c,. Determine ¢, and ¢, so that the initial conditions
dy
=2 —(0}) = -
y(0) =2 and 2(0)

are satisfied.

Solution  To determine the constants ¢, and c;, we first compute db /dx to get dp/dx = —c,e™* + 2c,e>,
Substituting in our initial conditions gives the following system of equations:

$(0) =cel+ce® =2,

d
EI_(O) _cleo+262eﬂ = -3 ' —C| +2c‘2 = -3,

aqte =2,

Adding the last two equations yields 3¢, = —1, s0 ¢; = —1/3. Since €+ {.‘2 2, we find
¢ = 7/3. Hence, the solution to the initial value problemis ¢(x) = (7/3)e™ — (1/3)e™.

We now state an existence and uniqueness theorem for first-order initial value problems.
We presume the differential equation has been cast into the format

4 _
dx_.f(xuy) .

Of course, the right-hand side, f{x, y), must be well defined at the starting value x, for x and at
the stipulated initial value y, = y{x) for y. The hypotheses of the theorem, moreover, require
continuity of both f and 3f/dy for x in some interval @ < x < b containing x,, and for y in
some interval ¢ < y < d containing yo. Notice that the set of points in the xy-plane that satisfy
a <x<band c <y <d constitutes a rectangle. Figure 1.5 on page 12 depicts this “rectangle

of continuity” with the initial point (xq, yp) in its interior and a sketch of a portion of the solution
curve contained therein.

- Existence and Uniqueness of Solution |

Theorem 1.  Consider the initial value problem

—=fxy),  yx)=x.
If f and af/dy are continuous functions in some rectangle

R={(x,y):a<x<bc<y<d}

that contains the point (xg, yp), then the initial value problem has a umque solution
¢(x) in some interval xy — 8 < x < xg -+ 5, where 8 is a positive number.

L R e e e I T T R T T - 5 BaLeazod

"We remark that the continuity of £ alone in such & rectangle is enough to guarantes the existence of a solution to the
initinl value problem in some open interval containing 5y, but uniqueness may not hold (see Example 9).
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Figure 1.5 Layout for the existence-uniqueness theorem

The preceding theorem tells us two things. First, when an equation satisfies the hypotheses
of Theorem 1, we are assured that a solution to the initial value problem exists. Naturally, it is
desirable to know whether the equation we are trying to solve actually has a solution before
we spend too much time trying to solve it. Second, when the hypotheses are satisfied, there is
a unique solution to the initial value problem. This uniqueness tells us that if we can find a
solution, then it is the only solution for the initial value problem. Graphically, the theorem says
that there is only one solution curve that passes through the point {xg, ¥5). In other words, for
this first-order equation, two solutions cannot cross anywhere in the rectangle. Notice that the
existence and uniqueness of the solution holds only in some neighborhood (xy — 8, xo + 8).
Unfortunately, the theorem does not tell us the span (25) of this neighborhood (merely that it
is not zero). Problem 18 elaborates on this feature.

Problem 19 gives an example of an equation with no solution. Problem 29 displays an ini-
tial value problem for which the solution is not unique. Of course, the hypotheses of Theorem 1
are not met for these cases.

When initial value problems are used to model physical phenomena, many practitioners
tacitly presume the conclusions of Theorem 1 to be valid. Indeed, for the initial value problem
to be a reasonable model, we certainly expect it to have a solution, since physically “something
does happen.” Moreover, the solution should be unique in those cases when repetition of the
experiment under identical conditions yields the same results.!

The proof of Theorem 1 involves converting the initial value problem into an integral
equation and then using Picard’s method to generate a sequence of successive approximations
that converge to the solution. The conversion to an integral equation and Picard’s method are
discussed in Project A at the end of this chapter. A detailed discussion and proof of the theorem
are given in Chapter 13.*

AT

s
i

o
T

AT =
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£

o o

YAt least this is the case when we are considering a deterministic model, as opposed Lo a probabilistic model.

*All references to Chapters 11-13 refer (o the expanded text, Fundamentals of Differential Eguations and Boundary 3
Value Problems, Tth ed.
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Example 8

Solution

Example 9

Solution

dy
LY =+r(l-m)f+2-1

on the interval (—eo, ),
Show that ¢(x) = &* - x is an explicit solution to

B A | ot B TL £~ P st T
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For the initial value problem

Y _a_ s -
ay  3—-=x-x°, y(1)=6,

does Theorem 1 imply the existence of a unigue solution?

Dividing by 3 to conform to the statement of the theorem, we identify fxy)as (22— xy*)f3
and 3f/dy as ~xy*. Both of these functions are continuous in any rectangle containing the point
(1, 6), so the hypotheses of Theorem 1 are satisfied. It then follows from the theorem that
the initial value problem (11) has a unique solution in an interval about x = 1 of the form
{1- 8,1+ 8), where & is some positive number.

For the initial value problem
dy
a2, =3, y2)=0,

does Theorem 1 imply the existence of a unique solution?

Here f(x,y) = 3y*” and &f/ay = 2y"'. Unfortunately df/dy is not continuous or even
defined when y = 0. Consequently, there is no rectangle containing (2, 0) in which both f
and &f/dy are continuous. Because the hypotheses of Theorem 1 do not hold, we cannot use
Theorem 1 to determine whether the initial value problem does or does not have a unigue
solution. It turns out that this initial value problem has more than one solution. We refer you to
Problem 29 and Project G of Chapter 2 for the details. ¢

In Example 9 suppose the initial condition is changed to ¥(2) = 1. Then, since f and
df/ay are continuous in any rectangle that contains the point (2, 1) but does not intersect the
x-axis—say, R = {(x,¥):0<x<10,0<y<5}—it follows from Theorem 1 that this new
initial value problem has a unique solution in some interval about x = 2.

(b) Show that xy* = xy° sin x = 1 is an implicit solution to
dy (xcosx+sinx—1)y
de I(x—xsinx)

on the interval (0, w/2).

In Problems 3-8, determine whether the given function is a
solution to the given differential equation.

on the interval (-, &), . 2y

(9 Show that @(x) = x>~ x7 is an explicit solution 3 y=sinx+s, E?"'y =+2
mxzdzy/dxz=2y°“meimem‘l(0'w)' 4, x = 2cosr—3sint +x=0

@) Show that y*+x-3 =10 is an implicit solution ’ 40 4o
lody/dxe = ~1/(2y) on the interval (-, 3). 5 0=2"-¢", ol oo A -2
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i
{ . dx e or quite large (if ¢ is large). Notice also that there is no
2 6. x=cos2t, o s C clue from the equation dy/dx = 2xy? itself, or from the
il dly dy initial value, that the solution will “blow up” at x = Le.
7. y=et=3e", e 5—23? =0 19. Show that the equation (dy/dx)?+)* +4 = 0 has no
! i 8. y=3sin2+ e, J +dy = 5 (real-valued) solution.

20. Determine for which values of m the function
$(x) = ¢™ is a solution to the given equation. J
In Problems 913, determine whether the given relation is an

i implicit solution to the given differential equation. Assume (a) ily__!_ 6-‘2 +5y =0
that the relationship does define y implicitly as a function of x d* dx
and use implicit differentiation. dy &y _dy
b =+3i—S+2—=10 3
9. 2+ y =4, = de  Tde dx :

~iw

21, Determine for .which values of m the function
2xy $(x) = x™is a sdlution to the given equation.

-1

10, y=lny=x*+1,

1 RIS RIS RIS
LY 4

d’y dy ;
= ay dy .o _
y (a) 3¢—S+1lx =0 :
¥ - - = dx |
; 11, e +y=x-1, ye=rg d‘;xz ) |
y dy !
12. 2 =sin(x+y} =1, = 2rsec{x+y)—1 (b) ng‘-xgx——Sy—O i
13 siny+xy—-2 =2, 22. Verify that the function ¢{x) = ¢e*+ ce” ¥ is a solu-
, N3 2 tion to the linear equation
y,,=6xy + (y')’siny = 2(y") Fy dy
— Ly =
-y FER y =0
| 14. Show that ¢{x) = ¢ sinx+c;cosx is a solution to for any choice of the constants c| and c;, Determine ¢,
d’y/dx® +y = 0 for any choice of the constants ¢; and and ¢, so that each of the following initial conditions is
¢;. Thus, ¢ sin x -+ ¢ cos x is a two-parameter family of satisfied. , R
solutions to the differential equation. (a) y(0} =2, )"(0) =1
15. Verify that ¢(x) = 2/(1 — ce*), where c is an arbitrary ®) y(1) =1, y(1)=0
j constant, is a one-parametet family of solutions to
dy _ Y >-2) In Problems 23-28, determine whether Theorem 1 implies
: dx 2 that the given initial value problem has a unique solution.
1 Graph the solution curves corresponding to ¢ =0, dy 4, _ 1
i + 1, +2 using the same coordinate axes. 2. x YT ¥0) =7 {
16. Verify that x> + ¢y* = 1, where ¢ is an arbitrary nonzero dy o, _
1 constant, is a one-parameter family of implicit solutions to . —— iy = sint, y(m) =35
&
| dy xy dx
: L 25, Ix—+4r=0, 2) = -
| P e e 4 x(2) T 4
o I and gfaph several of the solution curves using the same 2. dx e x(7) =0
iy i coordinate axes. dt i
! ; 17. Show that ¢(x) = Ce™+1 is a solution to 27 yﬂ’. =x y(1) =0 1
L dy/dx—3y = =3 for any choice of the constant C. dx ’ 1-
oy B Thus, Ce™* + 1 is a one-parameter family of solutions to . s 2) =1 j
d the differential equation. Graph several of the solution s o VYT h »2) = |
f- | curves using the same coordinate axes. |
I 18. Let ¢ > 0. Show that the function $(x) = (¢ — %) 29, (a) For the initial value problem (12) of Example 9,

is a solution to the initial value problem dy/dx = 2xy%,

! y(0) = 1/¢, on the interval —c < x < ¢. Note that this
solution becomes unbounded as x approaches *c. Thus,
the solution exists on the interval (=8, 8) with 8 = ¢,

show that ¢,{x) = Oand ¢y{x) = (x=2)° are

solutions. Hence, this initial value problem has mul-

tiple solutions. (See also Project G in Chapter 2.)
(b) Does the initial value problem )’ = 3?3,

. but not for larger 8. This illustrates that in Theorem 1
the existence interval can be quite small (f ¢ is small)

y(0) = 1077, have a unique solution in 2 neighbor-
hood of x = 07




2 is no
m the
= *c.

1S 1o

nction

nction

solu-

ne ¢
ms is

plies
L

30. Implicit Function Theorem. Ler G(x,y) have con-

tinwous first partial derivatives in the rectangle
R={(xy)a<x<bc<y<d} containing the
point (xg, ¥0). I G (x0. Yo} = O and the partial derivative
Gy(%0. Yo) # O, then there exists a differentiable function
y = &(x), defined in some interval I = (xy— 8, xo + ),
that satisfies G(.x. d(x) ) = 0forallxE L

The implicit function theorem gives conditions under

" which the relationship G{x, y) = 0 defines » implicitly

as a function of x. Use the implicit function theorem
to show that the relationship x + y + ™ = 0, given in
Example 4, defines y implicitly as a function of x near the
point (0, =1).

1 3 Direction Fields

Section 1.3 Direction Fields 15

31. Consider the equation of Example 5,

dy _
13 ydx-—4x—0.

(a) Does Theorem 1 imply the existence of a unique
solution to (13) that satisfies y(x;) =07

(b) Show that when x; # 0, equation (13) can't possibly
have a solution in a neighborhood of x = x, that sat-
isfies y(xp) = 0.

(¢) Show that there are two distinct solutions to (13)
satisfying y(0) = 0 (see Figure 1.4 on page 9).

1]

The existence and uniqueness theorem discussed in Section 1.2 certainly has great value, but it
stops short of telling us anything about the nature of the solution to a differential equation. For
practical reasons we may need to know the value of the solution at a certain point, or the inter-
vals where the solution is increasing, or the points where the solution attains a maximum value.
Certainly, knowing an explicit representation (a formula) for the solution would be a consider-
able help in answering these questions. However, for many of the differential equations that we
are likely to encounter in real-world applications, it will be impossible to find such a formula.
Moreover, even if we are lucky enough to obtain an implicit solution, using this relationship to
determine an explicit form may be difficult. Thus, we must rely on other methods to analyze or

approximate the solution.

One technique that is useful in visualizing (graphing) the solutions to a first-order differen-
tial equation is to sketch the direction field for the equation. To describe this method, we need
to make a general observation. Namely, a first-order equation

dy _
o = f(5)

example, the equation

6)) —=xl-y.

solution curves in color,

specifies a slope at each point in the
the direction that a graph of a solution

The graph of a solution to (1) that passes throu
at that point, and a solution through (

xy-plane where f is defined. In other words, it gives
to the equation must have at each point. Consider, for

ghthe point (~2, 1) musthaveslope (~2)2— 1 = 3
=1, 1) has zero slope at that point.

A plot of short line segments drawn at various points in the xy-plane showing the slope
of the solution curve there is called a direction field for the differential equation. Because
the direction field gives the “flow of solutions,” it facilitates the drawing of any particular
solution (such as the solution to an initial vaiue problem). In Figure 1.6(a) on page 16 we
have sketched the direction field for equation (1) and in Figure 1.6(b) we have drawn several




