Nonbook problems

1. Verify that for any nonzero constant b, the function $f(x)=\frac{1}{b} \cosh (b x)$ satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}-b \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=0
$$

(Recall that the function "cosh" is defined by $\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.)
2. Verify that on the interval $-2<x<2$, the two continuous functions $y(x)=\sqrt{4-x^{2}}$ and $y(x)=-\sqrt{4-x^{2}}$, obtainable from the implicit solution $x^{2}+y^{2}=4$ of the differential equation $x+y d y / d x=0$, are (explicit) solutions of this differential equation.
3. Solve the following differential equations.
(a) $\frac{d u}{d t}+\frac{2}{t} u=e^{t}, \quad t<0$.
(b) $\frac{d y}{d x}-(\tan x) y=\sec x \ln x, \quad 0<x<\pi / 2$.
(c) $x^{2} \frac{d y}{d x}-3 x y=x^{6} \tan ^{-1} x$.
4. Show that if L_{1} and L_{2} are linear operators, then $L_{1}+L_{2}$ is a linear operator.
5. Show by induction on n that if an operator L is linear, then for all $n \geq 1$, all constants $c_{1}, c_{2}, \ldots, c_{n}$, and all functions $f_{1}, f_{2}, \ldots f_{n}$,

$$
L\left[c_{1} f_{1}+c_{2} f_{2}+\ldots+c_{n} f_{n}\right]=c_{1} L\left[f_{1}\right]+c_{2} L\left[f_{2}\right]+\ldots+c_{n} L\left[f_{n}\right] .
$$

6. Show that the following distributive law holds for linear operators: if L_{1}, L_{2}, R_{1}, and R_{2} are linear operators, then

$$
\left(L_{1}+L_{2}\right)\left(R_{1}+R_{2}\right)=L_{1} R_{1}+L_{1} R_{2}+L_{2} R_{1}+L_{2} R_{2}
$$

Note: Because linear operators don't commute with each other in general (see the next exercise), the formula above is valid only with the L 's in front of the R 's on the right-hand side of the equation.
7. In class it was stated that general linear differential operators L_{1}, L_{2} do not commute with each other: $L_{1} L_{2} \neq L_{2} L_{1}$. Part (a) of this problem verifies this statement by giving examples of operators that do not commute. It is still true that some linear differential operators commute with each other; you will see examples of this in parts (b) and (c).
(a) Let L_{1} be the operator "multiplication by p ", where p is a non-constant function, and let $L_{2}=D$ (the first-derivative operator). Show that $L_{1} L_{2} \neq L_{2} L_{1}$.
(b) Let L_{1} and L_{2} be as in part (a), but this time assume that p is a constant function. Show that in this case $L_{1} L_{2}=L_{2} L_{1}$.
(c) Let a and b be constants, and let L_{1} and L_{2} be the linear differential operators $D+a$ and $D+b$, respectively. Using part (b) plus Exercise 5 above, show that $L_{1} L_{2}=L_{2} L_{1}$.

What you have shown in parts (a), (b) and (c) are special cases of a more general principle: all constant-coefficient linear differential operators $a_{n} D^{n}+a_{n-1} D^{n-1}+\ldots+a_{1} D+a_{0}$ commute with each other (here the a 's are constants), but non-constant-coefficient linear differential operators $p_{n} D^{n}+p_{n-1} D^{n-1}+\ldots+p_{1} D+p_{0}$ (here the p 's are functions at least one of which is non-constant) in general do not commute with constant-coefficient operators or with other non-constant-coefficient operators.
8. The method of the textbook's Examples 2-3 on p. 209, and in exercises 4.7/23-24, can be adapted to give solutions to several cases of Cauchy-Euler (pronounced "Co-she Oiler") equations not covered in the book's exercises. In this problem we consider these other cases.
(a) Fix numbers a, b, c (with $a \neq 0$) and consider the second-order homogeneous CauchyEuler equation

$$
\begin{equation*}
a t^{2} \frac{d^{2} y}{d t^{2}}+b t \frac{d y}{d t}+c y=0 . \tag{1}
\end{equation*}
$$

If we consider this equation on the interval $\{t<0\}$, the substitution $t=e^{x}$ cannot be used (why not?). However, using the Chain Rule and the substitution $t=-u$, show that (1) for $t<0$ is equivalent to the equation

$$
\begin{equation*}
a u^{2} \frac{d^{2} z}{d u^{2}}+b u \frac{d z}{d u}+c z=0 \tag{2}
\end{equation*}
$$

for $u>0$, where $z(u)=y(t)=z(-t)$. Except for the names of the variables, equations (1) and (2) are the same. Use this to show that if $t \mapsto \phi(t)$ is a solution of $a t^{2} y^{\prime \prime}+b t y^{\prime}+c y=0$ on the interval $\{t>0\}$, then $t \mapsto \phi(-t)$ is a solution of the same DE on the interval $\{t<0\}$, and vice-versa. Thus show that if $t \mapsto y_{\operatorname{gen}}(t)$ is the general solution of (1) on the interval $\{t>0\}$, then $t \mapsto y_{\text {gen }}(|t|)$ is the general solution of (1) on the interval $\{t<0\}$.
(b) Using the method of 4.7/23-24, find the general solution $t \mapsto y(t)$ of

$$
\begin{equation*}
6 t^{2} y^{\prime \prime}+t y^{\prime}+y=0 \tag{3}
\end{equation*}
$$

on the interval $\{t>0\}$. Then, using part (a) above, find the general solution of (3) on the interval $\{t<0\}$.
(c) Using the methods of the book's 4.7/23-24, find the general solution $t \mapsto y(t)$ of

$$
\begin{equation*}
t^{2} y^{\prime \prime}+5 t y^{\prime}+4 y=0 \tag{4}
\end{equation*}
$$

on the interval $\{t>0\}$. (Remember that your answer must be expressed purely in terms of t, not partly in terms of t and partly in terms of x.) Then, using part (a) above, find the general solution of (4) on the interval $\{t<0\}$.

