
Non-book problems

1. Verify that for any nonzero constant b, the function f(x) = 1
b

cosh(bx) satisfies the differential
equation

d2y

dx2
− b

√√√√1 +

(
dy

dx

)2

= 0.

(Recall that the function “cosh” is defined by cosh(x) = 1
2
(ex + e−x).)

2. Verify that on the interval −2 < x < 2, the two continuous functions y(x) =
√

4− x2 and
y(x) = −

√
4− x2, obtainable from the implicit solution x2 + y2 = 4 of the differential equation

x+ y dy/dx = 0, are (explicit) solutions of this differential equation.

3. Find the general solution of

dy

dx
=
x sinx

ln y
.

4. Find the general solution of

dy

dx
=

tan−1 x

ye2y
.

(Notational reminder: “tan−1” denotes the inverse-tangent function, also called arctangent, and
also written “arctan”. It does not denote the reciprocal of the tangent function, which is the
cotangent function “cot”.)

5. Consider the initial-value problem

dx

dt
+ x2 = x, x(0) = x0 (1)

(This is the same DE as in exercise 13 of Section 2.2, which you should do prior to starting this
exercise.)

For each of the following values of x0, find both the solution of the IVP and the domain of
the solution. The answers to “What is the domain of the solution?” are given below, but they
are not obvious. Do not expect to be able to find a quick way for guessing what the answers will
be based on x0. To get these answers you will have to solve the IVP first—you should get an
explicit formula for x(t)—and then, from your formula, figure out the domain of the solution
(remembering that only intervals are allowed as solutions of ODEs, even if the formula you
write down has a larger domain).

(a) x0 = 1
2

Answer for domain: (−∞,∞) (i.e. −∞ < t <∞)

(b) x0 = 2
Answer for domain: (− ln 2,∞) (i.e. − ln 2 < t <∞)

(c) x0 = −2
Answer for domain: (−∞, ln(3

2
)) (i.e. −∞ < t < ln(3

2
))
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(d) x0 = 0
Answer for domain: (−∞,∞)

(e) x0 = 1
Answer for domain: (−∞,∞)

6. Let p be a function that is differentiable on the whole real line, and consider the separable
differential equation

dy

dx
= p(y). (2)

(Here, the function g(x) that you’re used to seeing is just the constant function 1.) Note
that if we rename the variables x, t in the previous exercise to y, x respectively, the ODE in
that exercise can be rewritten in this form, with p(y) = y − y2.

(a) Show that the family of all solutions of (2) is translation-invariant in the following sense:
if y = φ(x) is a solution on an interval a < x < b, and k is any constant, then y = φ(x− k) is
a solution on the interval a + k < x < b + k. (Said another way: horizontally translating the
graph of a solution by any amount, you get the graph of another solution.)

(b) Using the Fundamental Existence/Uniqueness Theorem for First-Order Initial-Value
Problems (Theorem 1 on p. 12 in the textbook), show that for every point (x0, y0) ∈ R2, the
initial-value problem

dy

dx
= p(y), y(x0) = y0, (3)

has a unique solution on some open interval containing x0.

(c) Assume that there are numbers c < d such that p(c) = p(d) = 0. Use the “Uniqueness”
part of the Fundamental Existence/Uniqueness Theorem to show all of the following. (Once
you see how to do any one of these, the other two should be easy.)

• (i) If y0 > d, and φ is a solution of (3) defined on an open interval Ix0 containing x0, then
φ(x) > d for all x ∈ Ix0 . (Note: you are not allowed to assume that Ix0 is a small interval;
you have to show that what’s stated is true no matter how large Ix0 is. Ix0 could even be
the whole real line.)

• (ii) If y0 < c, then the solution φ of (3) satisfies φ(x) < c for all x ∈ Ix0 . (Same note as
above applies.)

• (iii) If c < y0 < d, then the solution φ of (3) satisfies φ(x) > d for all x ∈ Ix0 . (Same note
as above applies.)

(d) Check that the solutions you found in Exercise 5abc above are consistent with what
you showed (or were told to show) in part (c) of the current exercise.

7. Solve the following differential equations.
(a) du

dt
+ 2

t
u = et, t < 0.
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(b) dy
dx
− (tanx)y = secx lnx, 0 < x < π/2.

(c) x2 dy
dx
− 3xy = x6 tan−1 x.

8. Show that if F1 and F2 are differentiable functions on an open rectangle R in the xy plane,
and dF2 = dF1 throughout R, then F1 and F2 differ by a constant (i.e. there is a constant C
such that F2(x, y) = F1(x, y) + C for all (x, y) ∈ R).

9. Passing the “Exactness Test” not sufficient for exactness on domain with a
hole. As discussed in class and in the book, if M and N are continuously differentiable
(i.e. have continuous first partial derivatives) on an open rectangle R in the xy plane, and
My = Nx throughout R, then Mdx + Ndy is exact on R. A rectangle is an example of what
mathematicians call a simply connected region: a region with “no holes”. (The intuitive notion
of “no holes” can be given a precise definition, but not in MAP 2302.) It can be shown that on
any simply connected region R, not just rectangles, if M and N are continuously differentiable,
then Mdx+Ndy is exact on R if and only if My = Nx throughout R.

If R is not simply connected, then “My = Nx” is still a necessary condition for exactness
on R, but not a sufficient condition: there are always differentials that satisfy My = Nx, but
that are not exact. You will construct an example in this exercise. The non-simply-connected
region we will use is

R = {(x, y) ∈ R2 | (x, y) 6= (0, 0)}, (4)

i.e. R2 with the origin removed. This region has a “hole” at the origin. On R, define

M(x, y) =
−y

x2 + y2
, N(x, y) =

x

x2 + y2
. (5)

For the rest of this exercise, “R” always means the region in (4), and “M” and “N” always
mean the functions in (5).

(a) Show that M and N are continuously differentiable on R and that My = Nx throughout
R.

(b) Show that on the set {(x, y) ∈ R2 | x and y are both nonzero} (i.e. R2 with the
coordinate axes removed),

M(x, y)dx+N(x, y)dy = d(tan−1(
y

x
)) = d(− tan−1(

x

y
)).

(c) Define four functions as follows, with the indicated domains.

Fright(x, y) = tan−1(
y

x
), x > 0.

Fupper(x, y) = − tan−1(
x

y
) +

π

2
, y > 0.

Fleft(x, y) = tan−1(
y

x
) + π, x < 0.

Flower(x, y) = − tan−1(
x

y
) +

3π

2
, y < 0.
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Show that the following four identities hold:

Fupper(x, y) = Fright(x, y) throughout open quadrant I.

Fleft(x, y) = Fupper(x, y) throughout open quadrant II.

Flower(x, y) = Fleft(x, y) throughout open quadrant III.

Fright(x, y) = Flower(x, y) + 2π throughout open quadrant IV.

Quadrants I–IV are the usual quadrants of the xy plane, and “open quadrant” means “quadrant
with the coordinate axes removed”.

(d) Use the result of exercise 8 (of these non-book problems) to show the following:

• Fupper is the only continuously differentiable function defined on the entire open upper
half-plane {(x, y) ∈ R2 : y > 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fright on open quadrant I.

• Fleft is the only continuously differentiable function defined on the entire open left half-
plane {(x, y) ∈ R2 : x < 0} whose differential is M dx+N dy on this half-plane and that
coincides with Fupper on open quadrant II.

• Flower is the only continuously differentiable function defined on the entire open lower
half-plane {(x, y) ∈ R2 : y < 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fleft on open quadrant III.

(e) Show that because the identities in part (c) hold, the following definition of a function
F on the domain

{(x, y) ∈ R2 : (x, y) 6= (a, 0) for any a ≥ 0} (6)

(i.e. R2 with the origin and positive x-axis removed) is unambiguous, even though within each
open quadrant the definition gives two different formulas for F :

F (x, y) = Fright(x, y) in open quadrant I.

F (x, y) = Fupper(x, y) if y > 0, i.e. for (x, y) in the open upper half-plane.

F (x, y) = Fleft(x, y) if x < 0, i.e. for (x, y) in the open left half-plane.

F (x, y) = Flower(x, y) if y < 0, i.e. for (x, y) in the open lower half-plane.

F (x, y) = Fright(x, y) + 2π in open quadrant IV.

This function has a simple geometric interpretation: F (x, y) is the polar coordinate
θ ∈ (0, 2π) of the point (x, y).

(f) Use part (d) to show that F is the only differentiable function defined on the domain
(6) whose differential is M dx + N dy on this domain and that coincides with Fright on open
quadrant I.
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(g) Show that for all x0 > 0, limy→0+ F (x0, y) = 0, while limy→0− F (x0, y) = 2π.

(h) Use part (g) to show that there is no continuous function defined on the whole domain
R (see (4)) that coincides with F on the domain (6). Then, combine this fact with part (f) to
show that there is no continuously differentiable function on R whose differential is M dx+N dy
on this domain and that coincides with Fupper on open quadrant I.

(i) Use exercise 8 to show that if G is any differentiable function defined on open quadrant
I for which dG = Mdx + Ndy, then, on open quadrant I, G differs from Fupper only by an
additive constant.

(j) Use parts (h) and (i) to show that there is no differentiable function H defined on all
of R for which dH = Mdx + Ndy. Thus, Mdx + Ndy is not exact on R, despite satisfying
My = Nx at every point of R.

Fact: It is accepted practice to write “dθ” for the differential −y
x2+y2

dx+ x
x2+y2

dy on R, even
though there is no differentiable function θ defined on all of R whose differential is dθ!

10. Show that if L1 and L2 are linear operators, then L1 + L2 is a linear operator.

11. Show by induction on n that if an operator L is linear, then for all n ≥ 1, all constants
c1, c2, . . . , cn, and all functions f1, f2, . . . fn,

L[c1f1 + c2f2 + . . .+ cnfn] = c1L[f1] + c2L[f2] + . . .+ cnL[fn].

12. Show that the following distributive law holds for linear operators: if L1, L2, R1, and R2

are linear operators, then

(L1 + L2)(R1 +R2) = L1R1 + L1R2 + L2R1 + L2R2.

Note: Because linear operators don’t commute with each other in general (see the next exercise),
the formula above is valid only with the L’s in front of the R’s on the right-hand side of the
equation.

13. General (i.e. not constant-coefficient) linear differential operators L1, L2 do not commute
with each other: L1L2 6= L2L1. Part (a) of this problem verifies this statement by giving
examples of operators that do not commute. It is still true that some linear differential operators
commute with each other; you will see examples of this in parts (b) and (c).

(a) Let L1 be the operator “multiplication by p”, where p is a non-constant function, let
L2 = D (the first-derivative operator), and let L3 be defined by L3[f ](t) = tf ′(t). (When it
is agreed in advance that the letter t will be used for the independent variable, we may write
the definition of L3 as “L3 = tD”. The operator L1 may not look like a differential operator to
you, since there are no derivatives involved. It happens still to be called a differential operator,
but its order is zero.) Show that L1L2 6= L2L1 and that L3L2 6= L2L3.

Note: to show, for example, that L1L2 6= L2L1, compute what both L1L2 and L2L1 do to
a general differentiable function f , and see that the result is different for L2L1 from what it
was for L1L2.
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(b) Let L1 and L2 be as in part (a), but this time assume that p is a constant function. Show
that in this case L1L2 = L2L1. (I.e. show that (L1L2)[f ] = (L2L1)[f ] for all twice-differentiable
functions f .)

(c) Let a and b be constants, and let L1 and L2 be the linear differential operators D + a
and D + b, respectively. Using part (b) plus Exercise 12 above, show that L1L2 = L2L1.

What you have shown in parts (a), (b) and (c) are special cases of a more general principle: all
constant-coefficient linear differential operators anD

n+an−1D
n−1+. . .+a1D+a0 commute with

each other (here the a’s are constants), but non-constant-coefficient linear differential operators
pnD

n + pn−1D
n−1 + . . . + p1D + p0 (here the p’s are functions at least one of which is non-

constant) usually don’t commute with other linear differential operators (whether or not the
other operators are constant-coefficient).

14. The method of the textbook’s Examples 2–3 on p. 209, and in exercises 4.7/23–24, can
be adapted to give solutions to several cases of Cauchy-Euler (pronounced “Co-she Oiler”)
equations not covered in the book’s exercises. In this problem we consider these other cases.

(a) Fix numbers a, b, c (with a 6= 0) and consider the second-order homogeneous Cauchy-
Euler equation

at2
d2y

dt2
+ bt

dy

dt
+ cy = 0. (7)

If we consider this equation on the interval {t < 0}, the substitution t = ex cannot be used
(why not?). However, using the Chain Rule and the substitution t = −u, show that (7) for
t < 0 is equivalent to the equation

au2
d2z

du2
+ bu

dz

du
+ cz = 0 (8)

for u > 0, where z(u) = y(t) = z(−t). Except for the names of the variables, equations (7) and
(8) are the same. Use this to show that if t 7→ φ(t) is a solution of at2y′′ + bty′ + cy = 0 on
the interval {t > 0}, then t 7→ φ(−t) is a solution of the same DE on the interval {t < 0}, and
vice-versa. Thus show that if t 7→ ygen(t) is the general solution of (7) on the interval {t > 0},
then t 7→ ygen(|t|) is the general solution of (7) on the interval {t < 0}.

(b) Using the method of 4.7/23–24, find the general solution t 7→ y(t) of

6t2y′′ + ty′ + y = 0 (9)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (9) on the
interval {t < 0}.

(c) Using the methods of the book’s 4.7/23–24, find the general solution t 7→ y(t) of

t2y′′ + 5ty′ + 4y = 0 (10)
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on the interval {t > 0}. (Remember that your answer must be expressed purely in terms of t,
not partly in terms of t and partly in terms of x.) Then, using part (a) above, find the general
solution of (10) on the interval {t < 0}.
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