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Some notes on first-order ODEs
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Introduction

First-order ODEs come in two forms: derivative form and differential form. The
two forms are closely related, but differ in subtle ways not addressed adequately in
most textbooks (and often overlooked entirely)1. This often leads to an unclear or
inadequate definition of “implicit solution” to an equation in derivative form, before
differential-form equations (which are more easily relatable to “implicit solutions”
than are derivative-form DEs) have even been introduced. I have not seen a single
textbook whose definition of “implicit solution” I find wholly satisfactory. Exacerbat-
ing the problem is the usage of a relatively new term (or new, formal usage of an old,
informal term) that has crept into textbooks in recent decades—“explicit solution” of
a differential equation—that is at odds with the conventional meaning of “explicit”,
and is defined in these textbooks to mean exactly the same thing that mathematicians
have always called simply a solution of a differential equation.

The purpose of these notes, originally, was simply to give a definition of “implicit
solution” that is accurate, precise, complete, understandable by typical students in
an introductory DE course, and sensible.2 More topics, such as an attempt to give
a usable meaning to the term “explicit solution” in which the word “explicit” is not
superfluous and is less misleading than in current textbooks, were added as the writing
went along. This has made for a rather lengthy, never-quite-finished set of notes, an
ongoing project that I work on on only occasionally.

In order to make the presentation readable concurrently with a typical mod-
ern DE textbook, in these notes I define “implicit solutions of a DE in derivative
form” before even introducing differential form. However, one cannot achieve a com-
plete understanding of implicit solutions without investigating differential-form DEs
in more depth than is typical for a first course in DEs. Therefore, after we cover
differential-form DEs, we return to derivative-form equations to clean up the picture.

The “Notes for Instructors” section below is written for mathematicians (or,
rather, will be written for mathematicians once I get around to writing it); it is
intended to show why certain definitions commonly seen in textbooks are inadequate.
Most students, in their first differential equations course, will not be in a position to
appreciate these inadequacies. It is up to each instructor to decide whether, in a first

1Actually, it is only derivative-form DEs that can be written in the “standard form” dy
dx =

f(x, y) that are closely related to differential-form DEs. This is an important difference between
the two types, but there are important differences even between standard-form derivative-form and
differential-form DEs.

2(1) “Accurate” is a bit subjective in this case, since, to my knowledge, there exists no official
definition of “implicit solution”. In all textbooks I’ve seen from the era in which I was a student,
the term “implicit solution” was not given a formal definition, and some books did not use the term
at all. (2) What I mean by “sensible” is that the definition should not lead to anything being called
an “implicit solution” that shouldn’t be. The judgment of what “should” or “shouldn’t” be called
by a name that has no official definition is subjective too, of course, but these notes include my
justification of why I think the most common definition of “implicit solution” I’ve seen in textbooks
is not sensible.
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course on ODEs, it is more important that a definition be short and (superficially)
simple than that it be 100% accurate.

1 Notes for Instructors

[This section is not yet written. However, much of the content intended eventually
for this section is in footnotes addressed to instructors in the “Notes for Students”
section.]

2 Notes for Students

2.1 Review of “derivative form” and “solution”

In these notes, “differential equation”, which we will frequently abbreviate as “DE”,
always means ordinary differential equation, of first order unless otherwise specified.

A DE in derivative form is a differential equation that (up to the names of the
variables), using only the operations of addition and subtraction, can be put in the
form

G(x, y,
dy

dx
) = 0, (2.1)

where G is a function of three variables. Such a DE has an independent variable (in
this case x) and a dependent variable (in this case y). The notation “ dy

dx
” tells you

which variable is which.

Definition 2.1 For a given G, a solution of (2.1) on an open interval I is a real-
valued differentiable function φ on I such that when “y = φ(x)” is substituted into
(2.1), the resulting equation is a true statement for each x ∈ I (equivalently, such
that G(x, φ(x), φ′(x)) = 0 for each x ∈ I.3

3 See, for example, [1, p. 3]. Some current authors refer to what we have just defined as an explicit
solution of (2.1) on I, terminology that did not exist when I was a student. (Note for instructors:
Even worse, some authors would say not that φ is an explicit solution of (2.1), but that φ(x) is
an explicit solution of (2.1). This perpetuates students’ misunderstanding of what a function is,
which can lead to problems when defining differential operators, or the Laplace Transform, as is
usually done in an intro DE course.) This use of “explicit” has apparently been introduced to help
students understand later, by way of contrast, what an implicit solution is. As commendable as this
motivation may be, the terminology “explicit solution” suffers from several drawbacks: (1) It implies
a meaning for the term solution of an equation that differs from pre-existing, completely standard
meaning that is used throughout mathematics. (2) The terminology is misleading and potentially
confusing. So-called “explicit solutions” can be functions for which it is effectively impossible to
write down an explicit formula, which is usually what one means by “explicitly-defined function”.
We will deal with this terminological conundrum starting with Definition 2.2. I would prefer that
textbook-authors and other instructors stop using the terminology “explicit solution”, but since I
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For a given G, we call a one-variable function φ a solution of (2.1) (no interval
mentioned) if φ is a solution of (2.1) on some open interval I. A solution curve of
(2.1) is the graph of a solution, i.e. the set {(x, φ(x)) | x ∈ I}, where φ is a solution

of (2.1) on the interval I.

(In these notes, the symbol indicates the end of a definition, example, exercise,
or theorem.)

Henceforth, whenever we say “solution of a differential equation on an interval
I”, we always mean an open interval I.4

Definition 2.2 (temporary) If φ is a solution of the DE (2.1) (perhaps with an in-
terval specified, perhaps not), we will call the equation “y = φ(x)” an explicitsolution
(one word, for now), of the DE.5

Note that, according to Definition 2.1, an explicitsolution of a DE is not a solution
of the DE. A solution of a DE is a function; an explicitsolution is an equation. A
function and an equation are two different animals. An equation may be used to
define a function, as in “φ(x) = ex”. But “φ” is not the same thing as “the definition
of φ”, any more than an elephant is the same thing as the definition of an elephant.

Nonetheless, we allow ourselves to say, technically incorrectly, that “y = x2 is a
solution of dy

dx
= 2x” (for example), because that wording is so much less awkward

than “the function φ defined by φ(x) = x2 is a solution of dy
dx

= 2x”.6 This is
similar to allowing ourselves to say “x = 5 is a solution of x2 = 25” in place of the

cannot make this happen, in these notes I give a definition that I believe is what the definition
of “explicit solution” should have been all along, once the unfortunate decision to introduce this
terminology was made.

4In order to avoid certain distracting technicalities, in these notes we stick to open intervals for
the allowable domains of solutions to differential equations in derivative form. However, often it
is important to study differential equations on non-open intervals as well. For example, in initial-
value problems in which the independent variable is time t, we are generally interested only in what
happens in the future of the initial time t0, not in the past. In this case, the relevant intervals are of
the form [t0,∞), [t0, t1), or [t0, t1], where t1 > t0. Most of the statements made in these notes about
differential equations on open intervals can be generalized to non-open intervals, but sometimes the
statements have to be worded in a more complicated fashion. Your instructor can tell you which
statements generalize, and what modifications need to be made.

5The one-word term “explicitsolution” is something invented just for these notes. It is used here to
preserve logical clarity before replacing it with the two-word phrase “explicit solution” whose use in
modern textbooks like [3] is consistent with neither the conventional meaning of the word “explicit”,
nor, in some cases, with the long-established and completely standard meaning of “solution of a
differential equation” [1, p. 3].

6Only slightly more awkward than “y = x2 is a solution of dy
dx = 2x” is the following type of

phrasing that you may have seen instructors or textbook-authors use: “The function φ(x) = x2 is a
solution of dy

dx = 2x.” This phrasing is certainly much less awkward than, “The function φ defined
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more precise “5 is a solution of x2 = 25.” Each of these examples (the differential-
equation-solution and algebraic-equation-solution examples) is an example of “abuse
of terminology”, but this particular abuse is so standard, so convenient, so hard to
avoid, and so unlikely to lead to any confusion that every mathematician regards it
either as (i) a permissible abuse of terminology, or (ii) a second valid meaning of the
phrase “solution of an equation.” Because of this, we make the following definition:

Definition 2.3 An explicit solution (two words) of a DE is an explicitsolution of that
DE.

This is not the same definition of “explicit solution” that appears in (for example)
[3]. Rather, it is an attempt to reconcile any desire to use the phrase “explicit
solution” with (i) the standard meaning of “solution of a differential equation, (ii) the
expectation that an object called an “explicit solution” of a DE should, in particular,
be a solution of that DE, and (iii) what appears to be the motive for introducing
the phrase “explicit solution” into textbooks, namely “If there’s some object we’re
going to call an implicit solution, we ought to call something by the name explicit
solution.”7

2.2 Implicit solution of a derivative-form DE

Key in understanding what “implicit solution of a differential equation” means is
the understanding the concept of an implicitly defined function of one variable. You
learned about implicitly defined functions as far back as Calculus 1, when you studied
implicit differentiation, but we will review the concept here. In order to make sure
the concept is clear, we go into more depth than you probably did in Calculus 1 (or
even Calculus 3).

Suppose we are given an algebraic (i.e. non-differential) equation in variables x
and y. We can always write such an equation in the form

by φ(x) = x2 is a solution of dy
dx = 2x.” The reason we try not to use phrasing like “The function

φ(x) = x2 . . . ” in these notes is that the function is φ, not φ(x). The object φ(x)—a number—is
the output of the function φ when the input is called x.

However, practically all math instructors at least occasionally use phrasing like “The function
φ(x) = x2”, and some use it all the time. The language needed to avoid such phrasing is often
extremely convoluted (unless the student has been introduced to the notation “x 7→ x2”). So, while
the author of these notes does not like it, this type of phrasing is generally regarded as “permissible
abuse of terminology”. Nonetheless it is important that the student understand the difference
between a function and the output of that function. To help foster this understanding, we (mostly)
avoid this particular abuse of terminology in these notes, even though we allow certain other abuses
of terminology.

7As noted earlier, what would be far better than to use the definition of “explicit solution” in
these notes would be for authors and instructors to abandon using the phrase “explicit solution”
with anything other than its historical meaning: a solution for which we have an explicit formula.
But until that happens, the definitions in these notes may be of some use.
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F (x, y) = 0

for some two-variable function F . We may be interested in solving for y in terms of
x. For example, if

x2 + y3 − 1 = 0 (2.2)

then

y = (1− x2)1/3. (2.3)

In other words, if we define F (x, y) = x2 + y3 − 1 and φ(x) = (1 − x2)1/3, then
whenever the pair (x, y) satisfies F (x, y) = 0, it satisfies y = φ(x). Conversely, one
may verify by direct substitution that if y = (1− x2)1/3 then F (x, y) = 0. Thus

F (x, y) = 0 if and only if y = φ(x). (2.4)

Note that the “if” part of this implication is the “Conversely . . . ” statement above,
and can be written equivalently as the equation

F (x, φ(x)) = 0.

More generally than this example, any time (2.4) is true for a two-variable func-
tion F and one-variable function φ, we say that the equation F (x, y) = 0 implicitly
determines (or implicitly defines) y as a function of x, and we call φ the function of
x implicitly determined/defined by the equation F (x, y) = 0.

Now consider the equation

x2 + y2 − 1 = 0. (2.5)

“Solving for y in terms of x” gives the relation

y = ±
√

1− x2. (2.6)

Looking just at (2.5), it is already clear that any numerical choice of x restricts the
possible choices of y that will make the equation a true statement. Equation (2.6)
tells us the only possible values for y that will work. It also tells us that for each
x in the open interval (−1, 1) there are at most two such values; for x = 1 and for
x = −1 there is at most one such value; and for |x| > 1 there are no values of y that
will work. Conversely, if we substitute y = ±

√
1− x2 into (2.5), we see that all the

values of y that we have labeled as “possible” actually do work. Thus, for each pair
(x, y) of real numbers,

x2+y2−1 = 0 if and only if |x| ≤ 1 and either y =
√

1− x2 or y = −
√

1− x2. (2.7)
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This is a much weaker statement than a statement of the form (2.4), because the
sign in ±

√
1− x2 can be chosen independently for each x. On the domain [−1, 1], if

we define

φ1(x) =
√

1− x2, (2.8)

φ2(x) = −
√

1− x2, (2.9)

φ3(x) =

{ √
1− x2 if x is a rational number,

−
√

1− x2 if x is an irrational number,
(2.10)

then all three of these functions φi yield true statements, for each x ∈ [−1, 1], when
φi(x) is substituted for y in (2.5). In fact, since the sign “±” can be assigned ran-
domly for each x ∈ [−1, 1], there are infinitely many functions φ that work. What
distinguishes φ1 and φ2 from all the others is that they are continuous. If we restrict
their domains to the open interval (−1, 1), then they are even differentiable.

Now consider a more complicated equation, such as

ex + x+ 6y5 − 15y4 − 10y3 + 30y2 + 10xy2 = 0. (2.11)

Clearly, choosing a numerical value for x restricts the possible values for y that will
make equation (2.11) a true statement. It turns out that, depending on the choice x,
there can be anywhere from one to five values of y for which the pair (x, y) satisfies
equation (2.11). As in the previous example, on any x-interval I for which there is
more than one y-value that “works” for each x, there will be infinitely many functions
φ for which F (x, φ(x)) = 0, where F (x, y) is the left-hand side of equation (2.11).
However, there are not very many continuous φ’s that work. In this example, whatever
x-interval I we choose, there are at most five continuous functions φ defined on
I for which F (x, φ(x)) = 0. Writing out explicit formulas for them, analogous to
the formulas for φ1 and φ2 in the previous example, is a hopeless task. But these
continuous functions φ exist nonetheless. We can see this visually in Figure 1.

Definition 2.4 Let F be a function of two variables, φ a function of one variable,
and I an interval. We say that the equation F (x, y) = 0 implicitly determines or
implicitly defines the function φ, regarded as a function of x (or whatever name is
used for the first variable of F ), if F (x, φ(x)) = 0 for all x ∈ I.8

8Note to instructors: I dislike this usage of the word determines (or defines)—which is the only
one I’ve seen in Calculus 1-2-3 and Differential Equations textbooks that bother to give a definition
at all—and would argue against using it if I knew a good substitute. The word “determines” is best
be used only when there is a unique object being determined (as in (2.13) coming up soon); any
other usage is a significant and unnecessary departure from standard English usage of this word.
According to Definition 2.4, the equation 0 = 0, viewed as an equation on I×R, implicitly determines
(or even worse in this case, defines) every function I → R. For a less obvious example, the equation

(x2 + y)1/ ln(x2+y) − e = 0, viewed as an equation on {(x, y) ∈ R2 | x2 + y > 0}, determines every
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Figure 1: The graph of ex + x+ 6y5 − 15y4 − 10y3 + 30y2 + 10xy2 = 0.

Without reference to a specific interval I, we say that the equation F (x, y) = 0
implicitly determines φ, regarded as a function of the first variable of F , if the equation
F (x, y) = 0 implicitly determines φ (regarded as a function of x) on some open
interval.

The same definitions apply if the “0” in F (x, y) = 0 is replaced by any other
real number, or even by another function H(x, y) (in the latter case, we replace
“F (x, φ(x)) = 0” with “F (x, φ(x)) = H(x, φ(x))”.

function φ : R→ R for which φ(x) > −x2. And clearly we can cook up an arbitrarily complicated
expression F (x, y) such that “F (x, y) = 0” reduces to an identity, but does not obviously reduce to
an identity, at least not in the eyes of a student. Altering Definition 2.4 so as to exclude any equation
F (x, y) = 0 that restricts to an identity on some open subset of R2 would, of course, eliminate the
examples just given, but would complicate Definition 2.4 without eliminating all of the problems
intrinsic to using the word “determines” or “defines” as it is used in this definition. To see that the
problem cannot be fixed (artificially, but with pedagogical simplicity) by making “implicitly-defined
function” mean “function given by the conclusion of the Implicit Function Theorem”, see Examples
2.14 and 2.15.

In the setting of Definition 2.4, there is a unique object determined: the set of all functions
φ : I → R satisfying F (x, φ(x)) = 0, not the elements of this set (unless it is a set with only one
element, as in the conclusion of the Implicit Function Theorem). Even for the “0=0” example, this
author feels much more comfortable saying that the equation 0=0 determines the set of all functions
I → R, than saying that it determines the function x 7→ x53 + ex −

√
x2 + 1 tan−1 x.

However, in these notes the author is compromising on this point. In this instance he feels that
the benefit of rephrasing Definition 2.4 properly is outweighed by the risk that it would become
incomprehensible to too many intro DE students.
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Graphically, a function φ is implicitly determined by the equation F (x, y) = 0 if
the graph of φ is part of the graph of F (x, y) = 0.9 (For these purposes, “all of” is a
special case of “part of”.)

There are instances in which we want to know whether there is a one-variable
function φ such that F (φ(y), y) = 0. This comes up when we think of trying to solve
the equation F (x, y) = 0 for x in terms of y, rather than for y in terms of x. To handle
this case we can give a definition analogous to Definition 2.4, replacing the phrases “re-
garded as a function of x” and “first variable” with “regarded as a function of y” and
“second variable”, and replacing “F (x, φ(x)) = 0 with “F (φ(y), y) = 0”. To simplify
wording below, any time we say an equation F (x, y) = 0 implicitly determines (or
defines) a function φ, we mean to regard φ as a function of x, unless we say other-
wise.

Thus:

• Equation (2.2) implicitly determines the function φ given by the formula φ(x) =
(1− x2)1/3.

• Equation (2.5) implicitly determines the functions φ1, φ2, φ3 defined in (2.8)–
(2.10), and infinitely many others on the interval [−1, 1]. The only continuous
functions that (2.5) determines on [−1, 1] are φ1 and φ2.

• Equation (2.11) implicitly determines infinitely many functions, but only a few
continuous functions. In Figure 1, if we travel along the graph by starting at
the upper left and moving along the curve, we encounter vertical tangents at
points A, B, C, and D (labeled in the order that we encounter them). Let
xA, xB, xC , and xD denote the x coordinates of these points. Then (2.11)
implicitly determines a continuous function of x, say φ1, with domain (−∞, xA];
another continuous function of x, say φ2, with domain [xB, xA]; another, say φ3,
with domain [xB, xC ]; another, say φ4, with domain [xD, xC ]; and another, say
φ5, with domain [xD,∞]. On the interval [−3,−2], the equation F (x, y) = 0
determines five continuous functions (the restrictions of φ1, φ2, φ3, φ4, and φ5 to
this interval). On the interval [−5,−4], F (x, y) = 0 determines three continuous
functions (the restrictions of φ1, φ4, and φ5 to this interval).

In some cases, an equation F (x, y) = 0 will implicitly determine one and only
one function of x on some interval. That is a “best-case scenario”. When we are
in such a case, we can speak unambiguously of the function of x determined by this
equation. Often we can achieve this result by “windowing” x and y; i.e., by agreeing
to consider only pairs (x, y) where x lies in some specific interval I and y lies in some
specific interval J . We denote the corresponding set in xy plane by I × J :

9Recall that the graph of an equation in x and y is the solution-set of the equation: the set of
points (x, y) ∈ R2 for which the equation is a true statement.
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Figure 2: The graph of x2 + y2 = 1.

I × J = {(x, y) | x ∈ I and y ∈ J}.

In these notes we will call such a set a rectangle, even though we do not exclude the
possibility that I and/or J extend(s) infinitely in one direction or both. Thus, for
example, we consider the whole xy plane a rectangle; the set [1,∞)× (−∞,∞) is a
rectangle (consisting of all pairs (x, y) for which x > 1); the strip (−∞,∞) × (0, 1]
is a rectangle (consisting of all pairs (x, y) with 0 < y ≤ 1). Of course, objects that
Euclid would have called rectangles, such as [1, 2] × [3.1, 4.9], are also rectangles in
our terminology. In these notes, we will be most interested in open rectangles, those
we get by taking the intervals I and J to open.

When an equation F (x, y) = 0 implicitly determines more than function of x,
“windowing” may allow us to single out one of them. For example, consider the graph
of the circle x2 + y2 = 1 (Figure 2).

Let P = (x0, y0) be any point on the circle other than (1, 0) or (−1, 0); thus
y0 6= 0. For any such point, you can draw an open rectangle R = I × J , containing
(x0, y0), such that the portion of the circle lying in R is a portion of the graph of exactly
one of the two functions φ1, φ2 in (2.8)–(2.9) (φ1(x) =

√
1− x2, φ2(x) = −

√
1− x2).

For example, if y0 > 0 you can take J to be any open subinterval of (0,∞) that
contains y0, and then take I to be any open interval whatsoever that contains x0.
Choose some points on the graph in Figure 2 and draw rectangles around them with
the desired property.

Note that the closer your point (x0, y0) gets to (1, 0) or (−1, 0), the more limited
your choices of I and J become, in the sense that one endpoint of I will have to be
very close to x0, and one endpoint of J will have to be very close to y0. For example
if y0 = −.01 and x0 =

√
.9999 ≈ .99995, then the right endpoint of I will have to lie

between
√
.9999 and 1, while the right endpoint of J (which gives the location of the

upper boundary of the rectangle) will have to lie between −.01 and .01. But as long
as (x0, y0) 6= (±1, 0), some open rectangle will work.
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If you take (x0, y0) = (1, 0), then this windowing process fails in two ways to
have the desired effect. First, for no open interval I containing 1 is there a function
φ defined on all of I such that x2 + φ(x)2 = 1 for all x ∈ I, because such an interval
I will contain an x that is greater than 1 (so x2 + φ(x)2 > 1 no matter what you
choose for φ(x)). Second, for any open rectangle I × J containing (1, 0), for values of
x very close to but less than 1, both the point (x,

√
1− x2) and (x,−

√
1− x2) will lie

in I × J . Thus I × J will include points of the graphs of both φ1 and φ2, no matter
how small you take I and J .

Of course, similar statements are true for the point (x0, y0) = (−1, 0).

The Implicit Function Theorem gives conditions under which the “windowing
near a point (x0, y0)” idea works very nicely to guarantee that an equation such
as “F (x, y) = 0” determines at least one function of x, and, if it determines more
than one such function, to use (x0, y0) to single out one of them. Furthermore, the
implicitly-defined functions given by this theorem are actually differentiable (in fact,
continuously differentiable; i.e. the derivative of each implicitly-defined function is
continuous).

Theorem 2.5 (Implicit Function Theorem) Let F be a two-variable function
whose first partial derivatives are continuous on an open rectangle R = I×J . Suppose
that (x0, y0) ∈ R and that ∂G

∂y
(x0, y0) 6= 0, where ∂G

∂y
denotes the partial derivative of

F with respect to the second variable. Let c0 = F (x0, y0).
Then there exists an open subinterval I1 of I containing x0, an open subinterval

J1 of J containing y0, and a continuously differentiable function φ defined on I1, such
that

for all points (x, y) ∈ I1 × J1,
F (x, y) = c0 if and only if y = φ(x).

(2.12)

In Theorem 2.5, since x0 lies in I1, we may look at what (2.12) tells us when
x = x0. What this statement reduces to when x = x0 is the following:

for all y ∈ J1,
F (x0, y) = c0 if and only if y = φ(x0).

But by the definition of c0, we have F (x0, y0) = c0. Therefore, since y0 ∈ J1, the
“only if” part of the above statement tells us that y0 = φ(x0). Thus, the graph of the
function φ that the Implicit Function Theorem gives us will always contain the point
(x0, y0).

Let us pause to appreciate how strong the conclusion of this theorem is. State-
ment (2.12) says that for each x ∈ I1, there is one and only one value y ∈ J1 for
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which F (x, y) = c0, namely the value φ(x). Thus, (2.12) says that within I1× J1, the
equation F (x0, y0) = 0 determines y uniquely as a function of x—not just uniquely
among “nice” functions, like continuous functions or differentiable functions. Among
all functions with domain I1 and range contained in J1, φ is the only function that
satisfies F (x, φ(x)) = c0 identically in x. This function has the additional nice fea-
ture of being continuously differentiable (and hence continuous), but there is no other
function whatsoever on I1 that satisfies F (x, φ(x)) = c0 identically in x.

Compared statement (2.12) with statement (2.4). The only important difference
is that to get the second line of (2.12), we had to make the windowing restriction in
the first line. (The fact that we have “c0” in (2.12) where we have “0” in (2.4) is an
unimportant difference.)

The uniqueness (of the function φ) that is guaranteed by a statement of the
form (2.12) allows us to use terminology that is less awkward than what we used in
Definition 2.4. Specifically, whenever a statement of the form (2.12) holds true, we
can dispense with the phrase “regarded as a function of the first variable of F” in
that definition, or even introducing a letter for the function φ at all. We may simply
say the following:

Within the rectangle I1 × J1, the equation
F (x, y) = c0 determines y as a function of x.

(2.13)

Optionally, we may put the word “implicitly” in front of “determines” above. Doing
so emphasizes the fact that we are not saying we know how to produce a formula
that tells us how to compute y from x (we may or may not be able to produce such
a formula, depending on the function F ); we are simply saying that for each x ∈ I1,
one and only one value of y is singled out. But an unambiguous assignment of a value
y to each x ∈ I1 is exactly what “function on I1” means, by definition. No explicit
formula is required in the definition of “function”.

Similarly, if there exists a function φ defined on J1 such that

for all points (x, y) ∈ I1 × J1,
F (x, y) = c0 if and only if x = φ(y)

(2.14)

then we can say simply that within the rectangle I1 × J1, the equation F (x, y) = c0

determines x uniquely as a function of y. Thus, when condition (2.14) is met, we do
not have to write a whole new definition analogous to Definition 2.4, with “regarded
as a function of the first variable” replaced with “regarded as a function of the second
variable”, and with “F (x, φ(x)) = 0” replaced with “F (φ(y), y) = 0”.

When either (2.12) or (2.14) holds for some rectangle I1 × J1, we call φ an
implicitly-defined function.10

10The informal terminology “implicit function” is a less precise but common phrase meaning
“implicitly-defined function”. The only good use of the term “implicit function” is in the title of the
Implicit Function Theorem, where it provides a way to avoid the awkward title “Implicitly-Defined
Function Theorem”.
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Exercise. Look back at Figure 1. For which points (x0, y0) on the graph is it not true
that there is an open rectangle containing (x0, y0) on which the equation in caption
determines y uniquely as a function of x? (Don’t try to find the values of x0 and y0;
just show with your pencil where these “bad” points are on the graph.)

Now, let us get back to differential equations:

Definition 2.6 (temporary) We call an equation F (x, y) = 0 an implicitsolution
(one word, for now) of a differential equation

G(x, y,
dy

dx
) = 0 (2.15)

(for a given G) if
(i) the equation F (x, y) = 0 implicitly determines at least one function φ that is

a solution of (2.15), and
(ii) every differentiable function φ determined by the equation F (x, y) = 0, with

domain an open interval, is a solution of (2.15).11

Definition 2.7 If φ is a differentiable function determined implicitly by an
implicitsolution F (x, y) = 0 of (2.15), then we call φ an implicitly-defined solution of
(2.15).

Example 2.8 Consider the differential equation

x+ y
dy

dx
= 0. (2.16)

11Note to instructors: The definition of “implicit solution” does not, and should not, rely at all on
implicit differentiation of the equation F (x, y) = 0. The function F need not even be continuous, let
alone differentiable, for the concept of “implicit solution” to make sense (although dreaming up an
artificial non-continuous or non-differentiable example to drive this point home to your students is
more likely to confuse them.) An implicitly-defined solution of a DE is simply an implicitly-defined
function that happens to be a solution of the DE. The notion of implicitly-defined function does not
rely on calculus in any way.

Of course, it is tremendously important that the Implicit Function Theorem gives sufficient con-
ditions under which we can confirm, via implicit differentiation, that we have an implicit solution of
a DE is. When we launch too quickly into examples of implicit solutions, every one of which uses
implicit differentiation, and never return to the conceptual definition, we obscure the fundamental
issue of what an implicit solution actually is. Ask your students what an implicit solution of a DE
is, and the best answer you’re likely to get is, “It’s an equation that, after I implicitly differentiate,
I can rearrange back to the DE.” Few students, if any, will mention any relation to the notion of
implicitly-defined function, or to (true) solutions of the DE (what some authors call “explicit so-
lutions”). And students are likely to mis-identify some equations as not being implicit solutions of
a given DE, simply because implicit differentiation got them to a DE that was not algebraically
equivalent to the given one. You may want to try Examples 2.15 and 2.16 on your students.
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We claim that the equation

x2 + y2 − 1 = 0 (2.17)

is an implicitsolution of (2.16). (Equivalently, so is the equation x2 + y2 = 1.) To
verify this, we check that criteria (i) and (ii) of Definition 2.6 are satisfied:

• Criterion (i). Let φ1(x) =
√

1− x2 as in (2.8), but restricted to the open
interval (−1, 1). Note that F (x, φ1(x)) = 1 for all x ∈ (−1, 1), so φ1 is a
function implicitly determined by the equation F (x, y) = 1 (the conditions of
Definition 2.4) are met).

We compute φ′1(x) = −x√
1−x2 . Thus if we substitute y = φ1(x) into the

left-hand side of (2.16), we have

x+
√

1− x2
−x√
1− x2

= 0 for all x ∈ (−1, 1),

so φ1 is a solution of (2.16). Thus criterion (i) is satisfied12.

• Criterion (ii). Suppose φ is any differentiable function determined implicitly by
(2.17) on some open interval I. Then we have

x2 + φ(x)2 − 1 = 0

identically in x on the interval I. Differentiating, we therefore have

2x+ 2φ(x)φ′(x) = 0 for all x ∈ I.

Therefore φ is a solution of the equation

2x+ 2y
dy

dx
= 0

on I. Dividing by 2 we see that φ is a solution of (2.16) on I. Therefore criterion
(ii) is satisfied.

12We could just as well have used the function φ2 defined by φ2(x) = −
√

1− x2. But to show
that criterion (i) is met it suffices to come up with one function φ that works, so we chose the φ
that involves (slightly) less writing.
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Hence (2.17) is an implicitsolution of (2.16), and the function φ1 is an implicitly-
defined solution of (2.16).

There are actually two implicitly-defined solutions in this example: φ1 and −φ1

(the function that we called φ2 in (2.9)). The first of these is the function implicitly
defined by x2 + y2 = 1 on the rectangle (−1, 1) × (0,∞); the second is the function
implicitly defined by x2 + y2 = 1 on the rectangle (−1, 1)× (−∞, 0). Both functions
are solutions of (2.16).

Example 2.9 We claim that

(y − ex)(x2 + y2 − 1) = 0 (2.18)

is not an implicitsolution of (2.16). To verify this claim, it suffices to show that at
least one of criteria (i) and (ii) in Definition 2.6 is not met. For this, we observe that
if y = ex, then (2.18) is satisfied. Thus, the function φ defined on any open interval I
by φ(x) = ex is a function determined implicitly by (2.18). However, if we substitute
y = ex into (2.16), we get

x+ e2x = 0. (2.19)

Is it possible to choose the interval I in such a way that (2.19) holds true for all
x ∈ I? No, for if there were such an interval I, the left-hand side of (2.19) would be a
differentiable function on I, so we could differentiate both sides of (2.19) and obtain

1 + 2e2x = 0. (2.20)

But there isn’t even a single value of x for which this is true; 1 + 2ex > 0 for all x.
Thus there is no open interval I on which φ is a solution of (2.16).

Thus φ is a differentiable function determined implicitly by (2.18) that is not a
solution of (2.16). Therefore criterion (ii) in Definition 2.6 is not met, so equation
(2.18) is not an implicitsolution of (2.16). (Of course, the same reasoning shows that
the equation y − ex = 0 is not an implicitsolution of (2.16).)

We mention that in this example, criterion (i) is met. The same function φ used
in Example 2.8 is a solution of (2.16) that is defined implicitly by (2.18).

Example 2.10 The equation

x2 + y2 + 1 = 0 (2.21)

is not an implicitsolution of (2.16), because it fails criterion (i) of Definition 2.6.
There are no real numbers x, y at all for which (2.21) holds, let alone an open interval
I on which (2.21) implicitly determines a function of x. Since (2.21) determines no
functions φ whatsoever on any open interval I, criterion (ii) of Definition 2.6 is moot.
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Similarly, the equation

x2 + y2 = 0 (2.22)

is not an implicitsolution of (2.16). In this case there is a pair of real numbers (x, y)
that satisfies (2.22), but there is no open x-interval I on which, for each x ∈ I, there
is a real number y for which (2.22) is satisfied.

Now let us make an observation about implicitsolutions:

An implicitsolution of a DE is not a solution of that DE. (2.23)

The reason is simple. A solution of a DE is a function (of one variable). An implicit-
solution of a DE is an equation (in two variables). These are two completely different
animals.

However, in our earlier discussion of “explicit solutions”, we said that if φ is
a solution of a DE G(x, y, dy

dx
), we would permit ourselves to call the equation y =

φ(x) an explicit solution of the DE, regarding this phrasing as “permissible abuse of
terminology”. Note that the equation “y = φ(x)”, which we are allowing ourselves
to call a solution of a DE if φ is a solution of that DE, is equivalent to the equation
“y − φ(x) = 0”, which is an equation of the form F (x, y) = 0. In the same spirit, we
make the following definition:

Definition 2.11 We say that an equation F (x, y) = 0 is an implicit solution (two
words) of a given differential equation if it is an implicitsolution (one word) of that
differential equation, as defined in Definition 2.6.

Combining this definition with observation (2.23), we have a linguistic paradox:

An implicit solution of a DE is not a solution of that DE.

In other words, the meaning of “implicit solution” cannot be obtained by interpreting
“implicit” as an adjective modifying “solution”. One must regard the two-word phrase
“implicit solution” as a single term, a compound noun whose meaning cannot be
deduced from the meanings of the two words comprising it. That is why we initially
used the made-up word “implicitsolution”, which the student is not likely to find
outside these notes. Of course, as we observed earlier (but did not display in a line
like (2.2)), the term “explicit solution” has the same problem: an explicit solution of
a DE, as defined by Definitions (2.2) and (2.3) is not literally a solution of the DE,
according to the standard definition (2.1) of “solution of a differential equation”.

Most textbooks that give a definition of the term “implicit solution” (some books
essentially do not use the term at all; e.g. [1] uses it as a topic heading, but there
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is no object that is actually called an “implicit solution”), give a definition that is
similar to our definition of “implicitsolution”13.

Of course, in English there are many compound nouns of the form “<adjective>
<noun>” that do not mean “a special type of <noun>”. A prairie dog is not a type
of dog.

Note that the terminology “implicitly-defined solution” (Definition 2.7) does not
suffer from any paradox. An implicitly-defined solution of a DE is a solution of that
DE. It meets the criteria of Definition 2.1 perfectly.

Our approach to Example 2.8 above relied on our ability to produce an explicit
formula for a “candidate solution” of the given DE. What if, in place of (2.17), we
had been given an equation so complicated that we could not solve for y and produce
a candidate-solution φ to plug into the DE? This is where the Implicit Function
Theorem comes to the rescue.

Example 2.12 14 Show that the equation

x+ y + exy = 1 (2.24)

is an implicit solution of

(1 + xexy)
dy

dx
+ 1 + yexy = 0. (2.25)

To show this, we start with the observation that, writing F (x, y) = x+y+exy, we
have F (0, 0) = 1. So, let us check whether the Implicit Function Theorem applies to
the equation F (x, y) = 1 near the point (0, 0) (i.e. taking (x0, y0) = (0, 0) in Theorem
2.5). We compute

∂G

∂x
(x, y) = 1 + yexy,

∂G

∂y
(x, y) = 1 + xexy.

Both of these functions are continuous on the whole xy plane, and ∂G
∂y

(0, 0) = 1 6= 0.

Thus, the hypotheses of Theorem 2.5 are satisfied (with R = (−∞,∞) × (∞,∞)).
Therefore the conclusion of the theorem holds. We do not actually need the whole
conclusion; all we need is this part of it: there is an open interval I1 containing 0,
and a differentiable function φ defined on I1, such that F (x, φ(x)) = 1 for all x ∈ I1.

13Except that criterion (ii) seems to have been either overlooked or deliberately omitted in all the
textbooks I have seen. Example 2.9, as well as the discussion in footnote 8, show that omitting this
criterion can lead to calling a function an “implicit solution of a (given) DE” when it is nonsensical
to do so.

14This example is taken from Nagle, Saff, and Snider, Fundamentals of Differential Equations and
Boundary Value Problems, 5th ed., Pearson Addison-Wesley, 2008.
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Now we use the same method by which we checked criterion (ii) in Example 2.16:
implicit differentiation (i.e. computing derivatives of an expression that contains an
implicitly-defined function). Let us simplify the notation a little by writing y(x) =
φ(x). Then

x+ y(x) + exy(x) = 1 for all x ∈ I1,

=⇒ 1 +
dy(x)

dx
+ exy(x)

(
y(x) + x

dy(x)

dx

)
= 0 for all x ∈ I1,

=⇒ (1 + xexy(x))
dy(x)

dx
+ 1 + y(x)exy(x) = 0 for all x ∈ I1.

Therefore φ is a solution of (2.25). Thus, criterion (i) in Definition 2.6 is satisfied.
The exact same implicit-differentiation argument shows that if ψ is any differentiable
function determined on an open interval by (2.24), then ψ is a solution of (2.25).
Therefore criterion (ii) in Definition 2.6 is also satisfied. Hence (2.24) is an implicit
solution of (2.25).

Looking back at Example 2.8, could we have shown that criterion (i) of Defini-
tion 2.6 is satisfied using the technique of Example 2.12, using the function F (x, y) =
x2+y2? Absolutely! For (x0, y0) we could have taken any point of the circle x2+y2 = 1
other than (±1, 0). The partial derivatives are ∂G

∂x
(x, y) = 2x and ∂G

∂y
(x, y) = 2y. As in

Example 2.12, the partial derivatives of F are continuous on whole xy plane again15,
and since we are choosing a point (x0, y0) for which y0 6= 0, we have ∂G

∂y
(x0, y0) 6= 0.

Thus, the Implicit Function Theorem applies, guaranteeing the existence of a differ-
entiable, implicitly-defined function φ, with φ(x0) = y0. We can then differentiate
implicitly, as we did when we checked criterion (ii) in Example 2.8 (and as we did to
check both criteria in Example 2.12), to show that φ is a solution of (2.16). If our
point (x0, y0) has y0 > 0, then the solution of (2.16) that we get is the function φ1

defined by φ1(x) =
√

1− x2; if y0 < 0 then the solution of (2.16) that we get is −φ1.

The student may wonder how we could have used the method of Example 2.12
had we not been clever (or lucky) enough to be able to find a point (x0, y0) that lay on
the graph of our equation F (x, y) = a given constant. The answer is that we could
not have, unless we had some other argument showing that the graph contains at
least one point, and, more restrictively, that it contains at least one point at which
∂G
∂y

is not 0. For example, had we started with the equation

x+ y + exy = 2 (2.26)

15This does not always happen—Examples 2.8 and 2.12, and several other examples in these notes,
just happen to have F ’s with this property.
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instead of (2.24), we would have had a much harder time. We could show by implicit
differentiation that every differentiable function determined by (2.26) is a solution
of (2.25)—thus, that criterion (ii) of Definition 2.6 is satisfied—but that would not
tell us that there is even a single function of x defined by (2.26), or even that the
graph of (2.26) contains any points whatsoever. Conceivably, we could be in the same
situation as in Example 2.10, in which all differentiable functions implicitly defined
by (2.21)—all none of them—are solutions of our differential equation.

It so happens that we can show that the graph of (2.26) contains a point at
which ∂G

∂y
is not 0. However, doing that would require a digression that we do not

want to take right now. Instead, let us consider a different type of problem that can be
handled far more easily, even though the function F (x, y) is much more complicated.

Example 2.13 Show that there is a number c0 for which the equation

ex + x+ y5 − y4 + y3 + y2 + xy2 = c0 (2.27)

is an implicit solution of the differential equation

ex + 1 + y2 + (5y4 − 4y3 + 3y2 + 2y + 2xy)
dy

dx
= 0. (2.28)

To approach this problem, we start with a variation on the second step of Ex-
amples 2.8 and 2.12: we assume that there is a number c0 for which (2.27) implicitly
determines a differentiable function φ, say on an interval I. On the interval I, we
may then implicitly differentiate the equation (2.27)—i.e. differentiate with respect
to x both sides of the equation we obtain by substituting “y = φ(x)” into (2.27).
To keep the notation as simple as possible, we will just write “y” instead of “y(x)”
or “φ(x)” when we differentiate. (This is usually what we do when we differentiate
implicitly; we just haven’t done it until now in these notes.) Then, using the chain
rule and product rule, we find

ex + 1 + 5y4 dy

dx
− 4y3 dy

dx
+ 3y2 dy

dx
+ 2y

dy

dx
+ y2 + 2xy

dy

dx
= 0,

which is equivalent to equation (2.28).
Thus, all differentiable functions φ determined implicitly by an equation of the

form (2.27) will be solutions of (2.28). Thus for any c0 for which (2.27) implicitly
determines a differentiable function, equation (2.27) will be an implicit solution of
(2.28).

So, if we can show that there is such a c0, we’ll be done. For this, we look to the
Implicit Function Theorem to help us out. Letting F (x, y) denote the left-hand side
of (2.27), we compute
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∂G

∂x
(x, y) = ex + 1 + y2, (2.29)

∂G

∂y
(x, y) = 5y4 − 4y3 + 3y2 + 2y + 2xy. (2.30)

Both partials are continuous on the whole xy plane, so whatever point we choose for
(x0, y0), the Implicit Function Theorem’s hypothesis that the partials be continuous
on some open rectangle containing (x0, y0) will be satisfied. Let’s look for a point
(x0, y0) at which ∂G

∂y
is not 0. From our computation above,

∂G

∂y
(x, y) = y(5y3 − 4y2 + 3y + 2 + 2x). (2.31)

So we definitely don’t want to choose y0 = 0. But if we choose y0 to be anything
other than 0, we can certainly find an x0 for which the quantity inside parentheses
isn’t zero. Let’s make things easy on ourselves and choose y0 = 1. Then

5y3
0 − 4y2

0 + 3y0 + 2 + 2x0 = 6 + 2x0

6= 0 as long as x0 6= −3.

So if we take, for example, (x0, y0) = (0, 1), then ∂G
∂y

(x0, y0) 6= 0. For this choice

of (x0, y0), we have F (x0, y0) = 3. The Implicit Function Theorem then guarantees
us that on some open x-interval containing 0, the equation F (x, y) = 3 implicitly
determines a differentiable function of x. By the first part of our analysis (the part
that involved implicit differentiation), this guarantees that the equation F (x, y) = 3
is an implicit solution of (2.28). So we have found a c0 with the desired property.

As you probably noticed, in this example our expressions (2.29)–(2.30) for the
partial derivatives of F appeared also in (2.28). This is no accident. As students who
have taken Calculus 3 know, the multivariable chain rule implies that if we implicitly
differentiate the equation F (x, y) = c0 with respect to x, we obtain the equation

∂G

∂x
+
∂G

∂y

dy

dx
= 0. (2.32)

With foresight, the author chose the DE (2.28) to be exactly the equation (2.32) for
F (x, y) equal to the left-hand side of (2.27). For most DEs, it will not be true that
there is a value of c0 for which (2.27) is an implicit solution.

It may seem to you that the author cheated, by choosing essentially the only DE
for which the fact you were instructed to establish was actually a true fact. But you
will see later that equations of the form (2.32) actually come up a lot.
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You may also have noticed, in Example 2.13, that we could have come up with
a whole lot of points (x0, y0) that “worked”, in the sense that the hypotheses of the
Implicit Function Theorem would have been met. All we needed was a point (x0, y0)
for which y(5y3 − 4y2 + 3y + 2 + 2x)|(x0,y0) 6= 0. But “almost every” choice (x0, y0)

has this property; we just need y0 6= 0 and x0 6= − 1
2
(5y3

0 − 4y2
0 + 3y0 + 2). For each

nonzero choice of y0, there’s only one “bad” choice of x0; every other real number is
a good choice of x0. So the c0’s for which our method shows that (2.27) is an implicit
solution of (2.28), are all the numbers F (x0, y0) we can get by plugging in “good”
choices of (x0, y0) (i.e. all choices with y0 6= 0 and x0 6= − 1

2
(5y3

0−4y2
0 + 3y0 + 2)). We

can expect this set of numbers to be a large subset of the range of F—perhaps the
whole range of F . A challenging question for you to think about is this: are there any
numbers c0 for which (2.27) is not an implicit solution of (2.28)? Let’s strip away the
distracting complexity of the function F in (2.27) and pose the analogous question
for a much simpler F , the one in Example 2.12:

Question: Are there any numbers c0 for which the equation

x+ y + exy = c0

is not an implicit solution of (2.25)? (Note that (2.25) is the equation (2.32) for the
function F defined by F (x, y) = x+ y + exy.)

This question will not be answered in these notes; it is left as a challenge for
the student. We point out that the answer to such a question will not be the same
for all functions F that we could put on the left-hand side of “F (x, y) = c0”. For
example, if we take F (x, y) = x2 +y2, then only for c0 > 0 is the equation F (x, y) = c0

an implicit solution of (2.16) (which is the equation (2.32) for this F , simplified by
dividing by 2). But if we take F (x, y) = x + y, then for every real number c0 the
equation F (x, y) = c0 is an implicit solution of the analogous differential equation,
1 + dy

dx
= 0, as you can see easily by explicitly solving the equation x + y = c0 for y

in terms of x.

The Implicit Function Theorem is one of the most important theorems in calcu-
lus, and it is crucial to the understanding of implicit solutions of differential equa-
tions. However, it does have its limitations: there are differential equations that have
implicitly-defined solutions that are not functions given by the Implicit Function The-
orem, as the next example shows.

Example 2.14 Consider the algebraic equation

x2 − y2 = 0 (2.33)

and the differential equation
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Figure 3: The graph of x2 − y2 = 0.

x− y dy
dx

= 0. (2.34)

Equation (2.33) is equivalent to y = ±x. Thus on any interval I, equation (2.33)
implicitly determines two differentiable functions φ of x, namely φ(x) = x and φ(x) =
−x. Both of these are solutions of (2.34). Therefore (2.33) is an implicit solution of
(2.34), and the two functions φ above are implicitly-defined solutions of (2.34), on
any interval.

The point (x, y) = (0, 0) satisfies (2.33). But on no open rectangle containing the
point (0, 0) does (2.33) uniquely determine y as a function of x. Every such rectangle
will contain both a portion of the graph of y = x and a portion of the graph of y = −x
(see Figure 3; draw any rectangle enclosing the origin). Thus there are no intervals
I1 containing 0 (our x0) and J1 containing 0 (our y0) for which (2.12) holds.

Does this contradict the Implicit Function Theorem? No—the theorem says only
that there are I1 and J1 with the property (2.12) if the hypotheses of the theorem are
met. But in the current example, the function F for which (2.33) is of the form
F (x, y) = c0 is given by F (x, y) = x2 − y2. Thus ∂G

∂y
(x, y) = −2y, and if we take

(x0, y0) = (0, 0) then ∂G
∂y

(x0, y0) = 0. One of the hypotheses of the theorem is not
met, and therefore we can draw no conclusion from the theorem. The two functions
φ above are perfectly good implicitly-defined solutions of (2.34); they just are not
solutions that the Implicit Function Theorem finds.

For most two-variable functions F that we encounter in practice, the “bad points”
(x0, y0) at which the Implicit Function Theorem does not apply are of two types:
points at which the graph of F (x, y) = F (x0, y0) has a vertical tangent (as is the
case for the equations graphed in Figures 1 and 2), and points at which two or more
smooth curves intersect (as in Figure 3; in this simplest of examples the intersecting
curves are straight lines).
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The equation x2−y2 = 0 has another feature that none of our previous examples
have illustrated. On any open x-interval containing the origin, the equation implic-
itly determines two differentiable functions of x, but four continuous functions of x:
φ(x) = x, φ(x) = −x, φ(x) = |x|, and φ(x) = −|x|. In all of our previous examples,
on any open interval the continuous implicitly-defined functions and the differentiable
implicitly-defined functions were the same.

From the examples presented so far, and the examples in most textbooks, the
student may get the false impression that “implicit solution” means “An equation
that, after I implicitly differentiate, I can rearrange back to the DE.” That is not
the definition, however (Definition 2.6 does not mention implicit differentiation, or
require the function F in the definition to be differentiable). Below are two examples
that illustrate this point.

Example 2.15 Determine whether the equation

2|x|+ |y| = 2 (2.35)

is an implicit solution of (
dy

dx

)2

= 4|x|+ 2|y|. (2.36)

If we try to approach this just by implicit differentiation, we run into trouble
because the function F (x, y) = 2|x| + |y| is not differentiable anywhere that x = 0
or y = 0. However, if we run through all the sign-possibilities in (2.35) and solve for
y in terms of x, we see that (2.35) the graph of (2.35), a “stretched diamond” with
vertices at (±1, 0) and (0,±2), consists of the graphs of the following four equations:

y = −2x+ 2, 0 ≤ x ≤ 1,

y = 2x− 2, 0 ≤ x ≤ 1,

y = 2x+ 2, −1 ≤ x ≤ 0,

y = −2x− 2, −1 ≤ x ≤ 0.

Therefore (2.35) determines the following four differentiable functions:

φ(x) = −2x+ 2, 0 < x < 1,

φ(x) = 2x− 2, 0 < x < 1,

φ(x) = 2x+ 2, −1 < x < 0,

φ(x) = −2x− 2, −1 < x < 0.
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Every differentiable function of x determined by (2.35), with domain an open interval,
is one of these four functions (or the restriction of one of these to a smaller interval).
For each of these functions we have φ′(x) ≡ 2 or φ′(x) ≡ −2, so for any of these
functions if substitute y = φ(x) into (2.36), we find

left-hand side of (2.35) ≡ 4,

right-hand side of (2.35) = 2(2|x|+ |y(x)|)
≡ 2× 2 (because of (2.35))

= 4.

Therefore (2.36) is satisfied on the domain of φ, for all four choices of φ. Both criteria
of (2.6) are satisfied, so (2.35) is an implicit solution of (2.36).

Example 2.16 Determine whether the equation

y5 + y = x5 + x (2.37)

is an implicit solution of

dy

dx
=

5x4 + 1

5(x5 + x− y)4/5 + 1
. (2.38)

First, we observe that the graph of (2.37) has at least one point: the point (0, 0).
Next, we rewrite (2.37) as F (x, y) = 0, where F (x, y) = y5 + y − x5 − x. Then

∂G
∂y

= 5y4 + 1, which is continuous and positive on the whole xy plane. In particular,
∂G
∂y

is continuous and nonzero at (0, 0), so the Implicit Function Theorem guarantees

us that (2.37) determines a differentiable function of x near the point (0, 0) on the
graph of F (x, y) = 0.

So (2.37) determines at least one differentiable function of x. If φ is any such
function, then substituting y = φ(x) into (2.37) and differentiating implicitly, we find
(5y4 + 1) dy

dx
= 5x4 + 1, which implies

dy

dx
=

5x4 + 1

5y4 + 1
(2.39)

on the domain of φ (the denominator 5y4 + 1 is never zero). Hence φ is a solution of
(2.39).

Now, (2.39) does not look like (2.38). The two DEs are not equivalent; there are
points (x, y) at which the right-hand side of (2.38) is not equal to the right-hand side
of (2.39). But that doesn’t mean that (2.37) can’t be an implicit solution of (2.38).
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And, in fact, if we simply observe that on the graph of (2.37) we have y5 = x5 +x−y,
implying y4 = (x5 + x− y)4/5. Therefore for y = φ(x) we have

dy

dx
=

5x4 + 1

5y4 + 1
=

5x4 + 1

5(x5 + x− y)4/5 + 1
,

so φ is a solution of (2.38). Therefore (2.37) is an implicit solution of (2.38).

In the example above, it is irrelevant whether there are some solutions of (2.39)
that are not solutions of (2.38). The question was not whether every solution of
(2.39) was a solution of (2.38), but only whether a specific solution of (2.39), namely
a function determined implicitly by (2.37), was a solution of (2.38).

Remark 2.17 (Families of implicit solutions) Every equation of the form
F (x, y) = constant that implicitly determines some differentiable function of x, and
in which F is differentiable, is an implicit solution of the DE found by implicitly
differentiating “F (x, y) = constant”, namely (2.32). But for any such F and constant
C0, the DE (2.32) is not the only DE of which “F (x, y) = C0” is an implicit solution;
there are always inequivalent DEs of which “F (x, y) = C0” is an implicit solution.16

However, you are unlikely to find examples like Example 2.15 or Example 2.16 in a
DE textbook. In a typical DE course, implicit solutions tend to arise from solving
two types of equations—separable derivative-form DEs and exact differential-form
DEs. For any of these equations, there is always a family of solutions (not always an
exhaustive family, in the separable-DE case) of the form

{F (x, y) = C} , (2.40)

16Note to instructors: This point is not made in any textbook I have seen. This is one reason that
I find the treatment of “implicit solution” in current textbooks to be misleading. Every example of
implicit solution I see in textbooks that formalize the term, is an example of something much more
restricted: an element of a family of implicit solutions {F (x, y) = c}. Part of the problem is that
these books are defining something that they effectively never use, single implicit solutions rather
than families of implicit solutions. This leaves the student with the impression that the meaning of
“implicit solution” is something other than what his/her textbook-author has defined the term to
mean. At least one older textbook, [4], entirely avoids this problem by introducing families of curves
before any notion of “implicit solution” is used (the term “implicit solution” itself is not used in [4]).
Indeed, there really is no need ever to use the term “implicit solution”. For example, an equation
that meets the definition of “implicit solution” in these notes can be called “an implicit formula for
a solution”, or “a solution in implicit form”. For another example, it is perfectly reasonable to say,
“The general solution of x+ y dy

dx =, in implicit form, is {x2 + y2 = c | c > 0}.” (I do not agree that
the term “general solution” needs to be avoided for all nonlinear equations, but if you don’t like the
use of “general solution” here, just substitute “the set of all solutions”.) The reason I have given
a definition for “implicit solution” in these notes is not that I think the term should be used; it is
that if authors and instructors are going to continue using it in a formal manner, a definition that
is needed that is accurate, precise, complete, understandable by students, and sensible.
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where F is function that depends on the DE, and c is a constant ranging over some
(often difficult to specify) interval I that may or may not be the whole real line.
(I.e. for each c in this interval, the equation F (x, y) = C is an implicit solution of
the DE.) Every differentiable function implicitly determined by any member of the
family (2.40) is a solution of the same DE, namely (2.32).

2.3 Maximal and general solutions of derivative-form DEs

Often we want to talk about the collection of all solutions of a given differential
equation without pinning ourselves down to a specific interval I. For example, it may
happen we can write down a family of solutions, distinguished from each other by the
choice of some constant C, but for which the domain depends on the value of C and
hence differs from solution to solution. This suggests making the following definition:

Definition 2.18 (temporary) For a given G, the general solution of the differential
equation

G(x, y,
dy

dx
) = 0 (2.41)

is the collection of all solutions of (2.41), where “solution” is defined as in the second
paragraph of Definition 2.1. Said another way, the general solution of (2.41) is the
collection of pairs (I, φ), where I is an open interval and φ is a solution of (2.41) on
I.

We warn the student that the terminology “general solution” (with or
without the restriction “on an interval I”) is not agreed upon by all math-
ematicians (except for linear equations in “standard linear form”, which we have
not yet discussed in these notes), for reasons discussed at the end of this subsection.

There is a problem with Definition 2.18 that we will discuss shortly. However,
in their first exposure to the subject, many students will not have the mathematical
sophistication needed to understand the problem or the way to fix it. Therefore in
a first course on differential equations, it is acceptable to use Definition
2.18 as the definition of “general solution”, and students in this author’s
course will not be penalized for doing so. Some students, however, may recog-
nize (eventually, if not immediately) that there is a problem. The discussion below is
for those students, and any others who might be interested in what the problem is.
Students who are not interested, or have trouble understanding the discus-
sion, should skip to Example 2.23 and simply ignore the word “maximal”
wherever it appears in these notes.

To illustrate the problem, consider the separable equation dy
dx

= −y2. It is easy
to show that for every solution φ other than the constant solution φ ≡ 0, there is a
constant C such that
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φ(x) =
1

x− C
. (2.42)

on the domain of the solution. Remembering that the domain of a solution of a DE
is required to be an interval, we look at equation (2.42) and say, “Okay, for each C
this formula gives two solutions, one on (−∞, C) and (C,∞).” But even this is not
technically correct. These are not the only two intervals on which equation (2.42)
defines solutions. If φ is a solution on (C,∞), then it satisfies the DE at every point of
this interval. Therefore it also satisfies the DE at every point of (C,C + 1), at every
point of (C + 26.4, C + 93.7), and on any open subinterval of (−∞, C) or (C,∞)
whatsoever.

This example illustrates that the collection of pairs (I, φ) referred to in Definition
2.18 has a certain redundancy. There is terminology that allows us to speak more
clearly about this redundancy:

Definition 2.19 Let φ be a function on an interval I and let I1 be a subinterval of
I. The restriction of φ to I1, denoted φ|I1 , is defined by

φ|I1 (x) = φ(x) for all x ∈ I1 .

(We leave φ|I1 (x) undefined for x not in I1.) We say that a function ψ is a restriction
of φ if it is the restriction of φ to some subinterval.

If Ĩ is an interval containing I, and φ̃ is a function on Ĩ whose restriction to I is
φ, then we call φ̃ an extension of φ.17

Equivalently: if Ĩ is an interval of which I is a subinterval, and φ̃ and φ are
functions defined on Ĩ and I respectively, then

φ is a restriction of φ̃ ⇐⇒ the graph of φ is part of the graph of φ̃,

⇐⇒ φ̃ is an extension of φ.

(The symbol “⇐⇒ ” means “if and only if”. When preceded by a comma, as in the
transition from the first line above to the second, you should read the combination
“, ⇐⇒ ” as “which is true if and only if”.)

It may seem silly at first, and even outright confusing, to distinguish so carefully
between a function and its restriction to a smaller domain, but there are many times
in mathematics in which it is important to do this. For example, the sine function
does not have an inverse, but the restriction of sine to the interval [−π/2, π/2] does,
and the inverse of this restricted function is the function we call sin−1 or arcsin.

17The same definition applies even when the domains of interest are not intervals; e.g. for a
function φ with any domain whatsover, the restriction of φ to any subset of its domain is defined
the same way. But for functions of one variable, the DE student should remain focused on domains
that are intervals.
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If a function φ is a solution of a given DE on some interval I then the restriction
of φ to any subinterval I1 is also a solution. But of course, if we know the function
φ, then we know every speck of information about φ|I1 . Therein lies the redundancy
of Definition 2.18: the definition names a much larger collection of functions than is
needed to capture all the information there is to know about solutions of (2.41). We
will see below that we can be more efficient.

While we can always restrict a solution φ of a given DE to a smaller interval
and obtain a (technically different) solution, a more interesting and much less trivial
problem is whether we can extend φ to a solution on a larger interval. The extension
concept is always in the background whenever we talk about “the domain of a solution
of an initial-value problem”. When we say these words, it’s always understood that
we’re looking for the largest interval on which the formula we’re writing down is
actually a solution of the given IVP. This is the differential-equations analog of what
is often called the implied domain of a function represented by a formula, such as
f(x) = 1

x
, in Calculus 1 or precalculus courses. The implied domain of this function

f is (−∞, 0)
⋃

(0,∞) (also frequently written as “{x 6= 0}”). However, if we are
talking about “y = 1

x
” as a solution of the IVP

dy

dx
= −x−2, y(3) =

1

3
, (2.43)

then we would call “y = 1
x
” a solution of this IVP only on (0,∞), not on the whole

domain of the formula “ 1
x

”.

With these ideas in mind, we call a solution φ of a given DE (or initial-value
problem) on an interval I maximal or inextendible if φ cannot be extended to any
open interval Ĩ strictly containing I, while still remaining a solution of the DE.

Example 2.20 All the functions φ below are different functions, even though we are
using the same letter for them.

• φ(x) = 1
x
, 0 < x < 5, is a solution of dy

dx
= −x−2, but not a maximal solution.

It is also a solution of the IVP (2.43).

• φ(x) = 1
x
, 2.9 < x < 16.204, is another solution of dy

dx
= −x−2, and of the IVP

(2.43), but not a maximal solution.

• φ(x) = 1
x
, 3.1 < x < 16.204, is another solution of dy

dx
= −x−2, but it is neither

a maximal solution nor a solution of the IVP (2.43),

• φ(x) = 1
x
, x ∈ (0,∞) is a maximal solution of dy

dx
= −x−2, and is the maximal

solution of the IVP (2.43).

• φ(x) = 1
x
, x ∈ (−∞, 0) is a different maximal solution of dy

dx
= −x−2. It is not

a solution of the IVP (2.43).
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• φ(x) = 1
x
, x ∈ (−∞,−

√
2) is another non-maximal solution of dy

dx
= −x−2.

• φ(x) = 1
x

+ 37, x ∈ (0,∞) is yet another maximal solution of dy
dx

= −x−2. It is
not a solution of the IVP (2.43).

Example 2.21 The maximal solutions of the differential equation dy
dx

= sec2 x are
the functions φ defined by

φ(x) = tan x+ C, (n− 1

2
)π < x < (n+

1

2
)π, n an integer, C a constant

(one maximal solution for each pair of values (n,C) with n an integer and C real).

It can be shown that every non-maximal solution of a DE is the restriction of some
maximal solution of that DE.18 Thus the collection of maximal solutions “contains”
all solutions in the sense that the graph of every solution is contained in the graph of
some maximal solution. So, better than Definition 2.18 is this:

Definition 2.22 For a given G, the general solution of (2.41) is the collection of all
maximal solutions of (2.41).

(This definition supersedes Definition 2.18.)
Example 2.20 demonstrates, we hope, the economy gained by including the word

“maximal” in this definition. The student will probably agree that, even prior to
writing down Definition 2.22, maximal solutions are what we really would have been
thinking of had we been asked what all the solutions of “ dy

dx
= −x−2” are—we just

might not have realized consciously that that’s what we were thinking of.

Example 2.23 The general solution of dy
dx

= x may be written in short-hand as{
y =

1

2
x2 + C

}
. (2.44)

In this context equation (2.44) represents a one-parameter family of maximal solutions
φC , each of which is defined on the whole real line. Here C is an arbitrary constant;
every real number C gives one solution of the DE. (That’s why the curly braces are
written in (2.23); they tell us we’re talking about a set of objects of the form within
the braces.) We allow ourselves to write (2.44) as short-hand for “the collection of
functions {φC | C ∈ R}, where φC(x) = 1

2
x2 + C”.19

18Said another way, every solution can be extended to at least one maximal solution. Maximal
extensions always exist, but they are not always unique.

19Students in my own classes are permitted to omit the curly braces in (2.44), but I am trying to
maintain certain notational consistency across different sections of these notes.
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Example 2.24

• The general solution of
dy

dx
= −x−2, x > 0 (2.45)

(meaning that we are interested in this differential equation only for x > 0) may
be written as {

y =
1

x
+ C

}
, x > 0, (2.46)

a one-parameter family of maximal solutions. Because the restriction x > 0
is stated explicitly in (2.45), it is permissible to leave out the “x > 0” when
writing the general solution; we may simply write the general solution as{

y =
1

x
+ C

}
(2.47)

• The general solution of
dy

dx
= −x−2, (2.48)

with no interval specified, may also be written as (2.47)—i.e. it is permissible
to write it this way, in the interests of saving time and space. However, because
no interval was specified when the DE was written down, we must consider all
possible intervals. Therefore, in this context, equation (2.47) does not represent
a one-parameter family of maximal solutions; it represents two one-parameter
families of maximal solutions20. Equation (2.47) is acceptable short-hand for

20 Many calculus textbooks, and especially integral tables, foster a misunderstanding of the in-
definite integral. By definition, for functions f that are continuous on an open interval or a union
of disjoint open intervals, “

∫
f(x)dx” means “the collection of all antiderivatives of f”. If the im-

plied domain of f is an open interval, then this collection is the same as the general solution of
dy/dx = f(x). But we must be careful not to interpret formulas such as “

∫
x−2 dx = −x−1 + C”

or “
∫

sec2 x dx = tanx + C” as saying that every antiderivative of x−2 is of the form x−1 + C on
the whole implied domain of the integrand x−2, or that every antiderivative of sec2 x is of the form
tanx+ C on the whole implied domain of the integrand sec2 x.

The Fundamental Theorem of Calculus tells us that on any open interval on which a function f
is continuous, any two antiderivatives of f differ by an additive constant. (Equivalently, if F is any
single antiderivative of f on this interval, then every antiderivative of f on this interval is F +C for
some constant C.) It does not make any statement about antiderivatives on domains that are not
connected, such as the implied domain of f(x) = x−2 or the implied domain of f(x) = sec2 x.
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the union of the two families of functions

{φC | C ∈ R}, {ψC | C ∈ R}
where

φC(x) = 1
x

+ C, x > 0
and

ψC(x) = 1
x

+ C, x < 0.


(2.49)

(The union of the two families means the collection of functions that are in one
family or the other.21) The solution y = 1

x
+ 6 on {x < 0} (the function ψ6 in

the notation of (2.49)) is no more closely related to the solution y = 1
x

+ 6 on
{x > 0} (the function φ6) than it is to the solution y = 1

x
+ 7 on {x < 0} (the

function ψ7) ; in fact it is much less closely related. (The function ψ7 at least
has the same domain as ψ6, where as φ6 does not.)

Alternative ways of writing the general solution of dy
dx

= −x−2 are

“{y =
1

x
+ C, x > 0} and {y =

1

x
+ C, x < 0}” (2.50)

and

“{y =
1

x
+ C1, x > 0} and {y =

1

x
+ C2, x < 0}”. (2.51)

In (2.50), it is understood that, within each family, C is an arbitrary constant,
and that the two C’s have nothing to do with each other. In (2.51), C1 and
C2 again are arbitrary constants, and we have simply chosen different notation
for them to emphasize that they have nothing to do with each other. But all
three forms (2.47), (2.50), and (2.51) are acceptable ways of writing the general
solution, as long as we understand what they mean, and are communicating with
someone else who understands what they mean. These forms do not exhaust
all permissible ways of writing the general solution; there are other notational
variations on the same theme.

Example 2.25 The general solution of dy
dx

= sec2 x may be written as

21Note to instructors: Not wanting to over-burden students with new notation and terminology—
of which there is already a fair bit in these notes—I have opted not to use the symbol

⋃
. You will

notice later on, e.g. in (2.50), that in these notes I often write the union of two sets A,B as “A and
B”. Of course, if I were describing the elements of the union, and had everything within just one
pair of set-braces, I would have to use the conjunction “or”, not “and”, but I’ve deliberately avoided
writing (2.50) and similar expressions this way. I felt that using the word “or” in these expressions
would be confusing to students.
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{y = tanx+ C} , (2.52)

or as{
y = tanx+ C, (n− 1

2
)π < x < (n+

1

2
)π, n an integer

}
, (2.53)

or as

{
y = tanx+ Cn, (n− 1

2
)π < x < (n+

1

2
)π, n an integer

}
, (2.54)

or in various other ways that impart the same information. As in the “ dy
dx

= −x−2”
example, it is understood that C and Cn above represent arbitrary constants (i.e.
that they can assume all real values). But whichever of the forms (2.52)–(2.54) (or
other variations on the same theme) that we choose for writing the general solution
of dy

dx
= sec2 x, we should not forget that each of these forms represents an infinite

collection of one-parameter families of maximal solutions, one family for each interval
of the form (n− 1

2
)π < x < (n+ 1

2
)π (where n is an arbitrary integer).

Example 2.26 The general solution of the separable equation

dy

dx
= −y2 (2.55)

may be written as {
y =

1

x− C

}
and {y = 0}, (2.56)

or in various other ways that impart the same information22. In the given context,
the solution that is the constant function 0 may be written as “y = 0”, as in (2.56)
or as “y ≡ 0” (which, in this context, is read “y identically zero”). Since a solution
of (2.55), expressed in terms of the variables in (2.55), is function of x, the only
correct interpretation of “y = 0” in (2.56) is “y is the constant function whose value
is zero for all x”, not “y is a real number, specifically the number 0”. An instructor
may sometimes write a constant function using the identically-equal-to symbol “≡”,
especially in the early weeks of a DE course, to make sure that students are absolutely
clear what is meant; at other times, when there is little possibility of confusion, (s)he
may just use the ordinary “=” symbol.

Note that for each C, the equation “y = 1
x−C ” represents not one maximal

solution, but two: one on the interval (C,∞) and one on the interval (−∞, C).

22We do not discuss here how to figure out the general solution of this DE, since that is adequately
covered outside these notes.
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This example is very different from our previous ones. For the DE “ dy
dx

=
−x−2”, every maximal solution had domain either (−∞, 0) or (0,∞), and on each
of these intervals there were infinitely many maximal solutions. For the DE “ dy

dx
=

sec2 x”, there were infinitely many maximal solutions on every interval of the form
((n− 1

2
)π, (n+ 1

2
)π). By contrast, for the differential equation (2.55):

1. The domain of every maximal solution is different from the domain of every
other.

2. For every interval of the form (a,∞) there is a maximal solution whose domain
is that interval, namely y = 1

x−a .

3. For every interval of the form (−∞, a) there is a maximal solution whose domain
is that interval, namely y = 1

x−a . (The formula is the same as for solution on
(a,∞) mentioned above, but we stress again that the fact that as solutions of
a differential equation, “y = 1

x−a , x > a” and “y = 1
x−a , x < a” are completely

unrelated to each other.)

4. There is one maximal solution whose domain includes the domain of every other,
namely y ≡ 0.

The general solution of (2.55) also exhibits another interesting phenomenon.
The way we have written the general solution in (2.56) isolates the maximal solution
y ≡ 0 as not belonging to what appears to be a single nice family into which the
other maximal solutions fall (there is no value of C for which the formula “y = 1

x−C ”

produces the constant function 0). But for C 6= 0, writing K = 1
C

,

1

x− C
=

C−1

C−1x− 1
=

K

Kx− 1
. (2.57)

In the right-most formula in (2.57), we get a perfectly good function—the con-
stant function 0—if we set K = 0. But this function is exactly what appeared to
be the “exceptional” maximal solution in (2.56). Thus, we can rewrite the general
solution (2.56) as {

y =
K

Kx− 1

}
and

{
y =

1

x

}
. (2.58)

Here, K is an arbitrary constant, allowed to assume all real values, just as C
was allowed to in (2.56); we could just as well use the letter C for it. Writing the
general solution as in (2.58), the two solutions with formula y = 1

x
(one for x > 0,

one for x < 0) may be viewed as the exceptional ones, with all the others—including
the constant function 0—falling into the “ K

Kx−1
” family. This illustrates that there

be more than one way of expressing the collection of all maximal solutions as what
looks like a “nice family” containing most of the maximal solutions, plus one or more
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maximal solutions that don’t fall into the family. This illustrates that “falling into a
family” can be in the eye of the beholder, and not something intrinsic to a solution of
a DE.

But this example also provides another instance of a theme to which we keep
returning: how easy it is to mis-identify a family of formulas with a family of solutions
of a DE. The maximal solutions described by {y = 1

x−C} in (2.56) do not form one
one-parameter family; they form two.23 Every value of C corresponds to two maximal
solutions, one defined to the left of C and one defined to the right24. In (2.58),
the “family” {y = K

Kx−1
} is even more deceptive: for each nonzero K, the formula

y = K
Kx−1

yields two maximal solutions, one defined to the left of 1/K and one defined
to the right, while for K = 0 the formula yields just one maximal solution.

In this example, one may reasonably decide that (2.56) is preferable to (2.58) as a
way of writing down the general solution. The constant solution y ≡ 0 is distinguished
from all the others not just by being constant, but by being the only solution defined
on the whole real line. Furthermore, the collection of solutions described by {y =

1
x−C} is more “uniform” than is the collection described by {y = K

Kx−1
}, in the sense

that in the first collection, every value of the arbitrary constant corresponds to two
maximal solutions, while in the second collection there is a value of the arbitrary
constant, namely 0, for which the given formula defines only one maximal solution.
However, in the next example, we will see two different ways of writing the general
solution, neither of which can be preferred over the other by any such considerations.

Example 2.27 The general solution of the separable equation

dy

dx
= y(1− y) (2.59)

may be written as {
y =

C

e−x + C

}
and {y ≡ 1} . (2.60)

Using the same method as in the previous example, one sees that the same collection
of functions also be written as{

y =
1

Ce−x + 1

}
and {y ≡ 0} . (2.61)

23This mistake—not necessarily with this particular DE—is made in many, if not all, current DE
textbooks that use the phrase “one-parameter family of solutions” somewhere in their treatment of
nonlinear first-order DEs.

24Note to instructors: Of course, the constant solution 0 may be viewed as the “C =∞” case of
“y = 1

x−C ”, and you may even wish to tell your students that. However, this does not mean that
the general solution is a one-parameter family parametrized by the one-point compactification of
R, i.e. the circle. Such a conclusion would be fine if we were talking the one-parameter family of
rational functions defined by “y = 1

x−C ”, but we are not; we are talking about solutions of an ODE,
for which the only sensible domain is a connected one.

34



(Here, the analog of the previous example’s K has been renamed to C.) In each case,
in the family in curly braces, the formula giving y(x) yields two maximal solutions
for C < 0 and one maximal solution for C ≥ 0. The C = 0 solution in (2.60) is the
constant function 0, which is the “exceptional” solution in (2.61). The C = 0 solution
in (2.61) is the constant function 1, which is the “exceptional” solution in (2.60). The
situation is completely symmetric; neither of (2.60) and (2.61) can be preferred over
the other.

The last example illustrates that for nonlinear DEs there may be no singled-out
way to write the collection of all maximal solutions (or solutions on a specified inter-
val) of a nonlinear equation as a one-parameter family, or as several one-parameter
families, or as one or more one-parameter families of solutions plus some “exceptional”
solutions. Because of this, many authors prefer to use the terminology “general solu-
tion” only for “nice” linear DEs (the meaning of “nice” is not important right now),
and not to define the term at all for nonlinear DEs.25

2.4 General and implicit solutions on a region

For derivative-form DEs, so far we have defined “general solution on an interval I”
and “general solution” (with no interval specified). There are two other types of
general solution (of a derivative-form DE) that will be used later in these notes. To
talk about these, we first must define what an open set is in the xy plane. A subset
R of R2 is open if for every point (x0, y0) in R, there is some open rectangle that

25Note to instructors: I feel, however, that too much is lost this way. It is important for students
to be able to know when they’ve found all (maximal) solutions, whether expressed explicitly or
implicitly. I have not found a textbook that systematically addresses the question “Have we found
all solutions (of a given nonlinear DE)?” at all, or even mentions the question explicitly. I fear that
this omission reinforces the prevalent and unfortunate impression that the only thing one needs to
do in DEs is push symbols around the page by whatever sets of rules one is told for the various types
of equations, and that one does not need to question whether and/or why those rules yield all the
solutions.

I feel that it is worthwhile to give the student a name for the collection of all solutions. Of course,
“solution-set” would do this, but I fear that students at the level of an intro DE course may have
heard this term in “solution-set of an algebraic equation or inequality”—and if so, have heard it
only in this context—and are too likely to think of a “solution-set” as always being a subset of R
or R2 or R3. Hence I have chosen the name “general solution”, which is consistent with the use of
this term for “nice” nth-order linear DEs, i.e. those for which the solution-set is an n-dimensional
affine space.

Of course, you (the instructor) may have a different convention that you prefer for use of the term
“general solution”. One convention I caution against, however, is to use “general solution” to refer
to a non-exhaustive collection of solutions (or for a “typical” element of such a collection) for which
(s)he has produced a nicely-parametrized family of formulas. As the simple examples 2.26 and 2.27
illustrate, the choice of which solutions should be considered part of a family, and which should be
considered exceptional, can be in the eye of the beholder, and can be an artifact of the method used
to find the solutions.
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contains (x0, y0) and is contained in R. Another term we will use for “open subset of
R2 ” is region26.

Do not expect to understand right away why the following refinement of “general
solution” might be needed; this will begin to become clearer in the next section. If
you find the definition hard to understand, just skip over it for now, and re-read
it once it starts being used (fact (2.67)) and the subsequent examples in Section 2.5.

Definition 2.28 (General solution in a region) LetR be a region in the xy plane.
The general solution, in R, of an equation G(x, y, dy

dx
) = 0, is the collection of all so-

lutions whose graphs lie in R and that are maximal in R. Here, by “solution that is
maximal in R” we mean a solution, defined on some open interval, that cannot be
extended to a solution on a larger open interval without its graph leaving R.

In the next definition, you will see the imposing phrase “collection E of algebraic
equations in x and y”. An example of what this means is (2.40): for a given function
F , each equation F (x, y) = C is an algebraic equation (no derivatives appear), and
as we vary C we get a collection of such equations. (We could also have called this
collection simply a set of equations.)

You also may find criterion (ii) in this next definition hard to understand. If so,
don’t worry; it will be explained in the second paragraph after the definition.

Definition 2.29 (General solution on a region, in implicit form) For a given
G, consider the derivative-form DE

G(x, y,
dy

dx
) = 0. (2.62)

Let R be a region in the xy plane. We call a collection E of algebraic equations in x
and y the general solution of (2.62) in R, in implicit form, if

(i) each equation in the collection E , restricted to R (i.e. with (x, y) required to
lie in R) is an implicit solution of (2.62) (see Definitions 2.6 and 2.11), and

(ii) every solution-curve of (2.62) that lies in R, lies in the union of graphs of
finitely many or countably many27 equations in the collection E .

26Note to instructors: I am taking some liberties here. The usual definition of “region” is connected
non-empty open subset. I did not want to distract the student with a definition of connected, and
felt that the student would understand from context that when “an open set in R2” is referred to
in these notes, it is understood that the set is non-empty.

27 The set N of natural numbers {1, 2, 3, . . . } is an infinite set that is called countable, or countably
infinite. More generally, the empty set and any set that can be indexed by a subset of N (for example,
a collection of three curves C1, C2, C3, or an infinite collection of curves {Cn}∞n=1) is called countable,
and we say it has countably many elements. Every finite set is countable, so the phrase “finitely many
or countably many” is redundant, but the author nonetheless wanted the student to see “finitely
many” explicitly in Definition 2.29. Not every infinite set is countable; the set of all real numbers is
an uncountable set.
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Alternatively, we refer to such a collection E as an implicit form of the general solution
of (2.62) on R.

If no region R is mentioned explicitly, it is understood that we are taking R = R2.
We may rewrite the definition for this special case more simply:

We call a collection E of algebraic equations in x and y the general solution of
(2.62) in implicit form, or an implicit form of the general solution of (2.62), if

(i)′ each equation in the collection E is an implicit solution of (2.62), and
(ii)′ every solution of (2.62) has its graph contained in the union of graphs of

finitely many or countably many equations in the collection E .

As mentioned earlier, one example of a collection of equations is a one-parameter
family of equations {F (x, y) = C}, where F is a specific function and C is an arbitrary
constant. But we do not limit ourselves to such a simple collection of equations in
Definition 2.29; there are DEs whose general solutions cannot be given (at least not
obviously), even in implicit form, by such a one-parameter family of equations.

Based on earlier definitions, such as Definition 2.7, what you might have expected
to see in place of criterion (ii) in Definition 2.29 is the simpler, “Every solution-curve
of (2.62) that lies in R, lies in the the graph of some equation in the collection
E .” However, this would lead to an inadequate definition. The reason for “union of
graphs” in (ii) is that sometimes we find ourselves with a collection E of equations
for which some solution-curves of (2.62) are partially contained in the graph of one
equation in the collection and partially contained in another (and perhaps partially
contained in a third, etc.), without entirely being contained in the graph of any one
of our equations. (We will see an example of this later, at the end of Example 2.63.)
This can sometimes be fixed by throwing more equations into the collection E . But
adding more equations will almost always make the new collection of equations much
harder to write down, and still may not handle cases in which the graph of a solution
is not contained in any finite union of graphs of equations in the original collection
E , but only in a countably infinite union. (This will also be encountered in Example
2.63.)

A cautionary note: Do not be misled by the terminology “the general solution
of (2.62) in R, in implicit form.” While there is only one general solution of (2.62)
in R—the collection of all solutions whose graphs curves in R and that are maximal
in R—there are infinitely many implicit forms of this general solution. This is the
reason for the alternative terminology, “an implicit form of the general solution of
(2.62) in R”. Sometimes two different implicit forms of the same general solution in
R may differ only in “trivial” ways; for example, if one implicit form of the general
solution in R is a family of equations F (x, y) = C, then another is 2F (x, y) = C, and
another is F (x, y)3 = C. But implicit forms of the same general solution can differ
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in much less trivial ways. We saw this even for explicit ways of expressing general
solutions in Examples 2.26 and 2.27.

2.5 Algebraic equivalence of derivative-form DEs

Some algebraic manipulations that, in general, are helpful when we are solving dif-
ferential equations, have the potential to change the solution-set, either losing some
solutions if the original or introducing spurious “solutions” that are not solutions of
the original DE.28 In this section of the notes, we discuss how to be aware of and deal
with this problem.

Definition 2.30 We say that two derivative-form differential equations, with inde-
pendent variable x and dependent variable y, are algebraically equivalent on a region
R if one equation can be obtained from the other by the operations of (i) adding to
both sides of the equation an expression that is defined for all (x, y) ∈ R 29, and/or
(ii) multiplying both sides of the equation by a function of x and y that is defined
and nonzero at every point of R. When the region R is all of R2, we will often say
simply that the two DEs are algebraically equivalent.

Note that subtraction of an expression A is the same as addition of −A, and
division by a nonzero expression A is the same as multiplication by 1

A
, so subtraction

and division are operations allowed in Definition 2.30, even though they are not
mentioned explicitly.

Example 2.31 The differential equations

dy

dx
= y(1− y) (2.63)

and

1

y(1− y)

dy

dx
= 1 (2.64)

are algebraically equivalent on the regions {(x, y) | y < 0}, {(x, y) | 0 < y < 1},
and {(x, y) | y > 1}. However, they are not algebraically equivalent on the whole xy
plane.

28Unfortunately, this is rarely mentioned in textbooks outside the context of “losing constant
solutions of separable DEs”. In textbooks, it is common for some exercise-answers in the back of
the book to be wrong because mistakes of the type discussed here were overlooked by the writer.
Even some worked-out examples in some textbooks suffer from this problem.

29Note to students: The expression is allowed to involve dy
dx—i.e. it could be of the form F (x, y, dydx )

for some three-variable function F—which is why we did not say “function of x and y” here. If the
expression is F (x, y, dydx ), our requirement that it be “defined for all (x, y) ∈ R” is short-hand for:
for each (x, y) ∈ R there is some real number z such that F (x, y, z) is defined.
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Example 2.32 The differential equations

(x+ y)
dy

dx
= 4x− 2y (2.65)

and

dy

dx
=

4x− 2y

x+ y
(2.66)

are algebraically equivalent on the regions {(x, y) | y > −x} and {(x, y) | y < −x},
but not on the whole xy plane.

Why this terminology? Mathematicians call two equations (of any type, not just
differential equations) equivalent if they have the same set of solutions. For example,
the equation 2x + 3 = 11 is equivalent to the equation 3x = 12. A general strategy
for solving equations is to perform a sequence of operations, each of which takes us
from one equation to an equivalent but simpler equation (or to an equivalent set of
simpler equations, such as when we pass from “(x− 1)(x− 2) = 0” to “x− 1 = 0 or
x− 2 = 0”).

But often, when we manipulate equations in an attempt to find their solution-
sets, we perform a manipulation that changes the solution-set.30 This happens, for
example, if we start with the equation x3 − 3x2 = −2x and divide by x, obtaining
x2 − 3x2 = −2. In this example, we lose the solution 0. (The solution set of the first
equation is {0, 1, 2}, while the solution set of the second is just {1, 2}.) For another
example, if start with the equation

√
x+ 4 = −3, and square both sides, we obtain

x+ 4 = 9, and hence x = 5. But 5 is not a solution of the original equation;
√

5 + 4
is 3, not −3. Our manipulation has introduced a “spurious solution”, a value of x
that is a solution of the post-manipulation equation that we may mistakenly think is
a solution of the original equation, when in fact it is not.

For this reason it is nice to have in our toolbox a large class of equation-
manipulation techniques that are guaranteed to be “safe”, i.e. not to change the
set of solutions. For differential equations, the operations allowed in the definition of
“algebraic equivalence” above are safe. The precise statement is:

If two differential equations are algebraically equivalent on a
region R, then they have the same general solution on R.

}
(2.67)

(Here and throughout in these notes, “solution of a DE on (or in) a region R” means a
solution whose graph is contained in R.) We may restate (2.67) more briefly as “Alge-
braically equivalent DEs have the same set of solutions,” or “Algebraically equivalent

30Usually this is due to carelessness, but there are other times when we do not have much choice.
In those cases, we try to keep track separately of any solutions we may have lost or spuriously gained
in this step.
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DEs are equivalent,” sacrificing some precision by omitting reference to the region.
But on regions that are not all of R2, the briefer wording must be interpreted more
carefully to mean statement (2.67).

When we perform a sequence of algebraic operations in an attempt to solve a
differential equation, especially a nonlinear one, we are rarely lucky enough to end up
with a DE that is algebraically equivalent to the original one on the whole xy plane.
But usually, we maintain algebraic equivalence on regions that fill out most of the xy
plane, as in Examples 2.31 and 2.32 above.

To see why statement (2.67) is true, let us check that operation (ii) in Definition
2.30 does not change the set of solutions whose graphs lie in R. Let us suppose we
start with a (first-order) derivative-form DE of the most general possible form:

G1(x, y,
dy

dx
) = G2(x, y,

dy

dx
). (2.68)

(Of course, by subtracting G2(x, y, dy
dx

) from both sides, we can put this in the simpler

form G(x, y, dy
dx

) = 0, but since we often perform manipulations on equations without
first putting them in the simple form (2.1), we will illustrate the solution-set-doesn’t-
change principle for DEs that have not been put in that form.) The equation obtained
by multiplying both sides of (2.68) by a function h that is defined at every point of
R and is nonzero on R is

h(x, y)G1(x, y,
dy

dx
) = h(x, y)G2(x, y,

dy

dx
). (2.69)

Suppose that φ is a solution of (2.68). Then for all x in the domain of φ,

G1(x, φ(x), φ′(x)) = G2(x, φ(x), φ′(x)). (2.70)

If the graph of φ lies in R, then for all x in the domain of φ, the point (x, φ(x)) lies
in R, so the number h(x, φ(x)) is defined, and equality is maintained if we multiply
both sides of (2.70) by this number. Therefore

h(x, φ(x))G1(x, φ(x), φ′(x)) = h(x, φ(x))G2(x, φ(x), φ′(x)) (2.71)

for all x in the domain of φ. Hence φ is a solution of (2.69). Thus every solution of
(2.68) whose graph lies in R is also a solution of (2.69) whose graph lies in R.

Conversely, suppose that φ is a solution of (2.69) whose graph lies in R. Then
(2.71) is satisfied for all x in the domain of φ. By hypothesis, h(x, y) 6= 0 for every
point (x, y) ∈ R, so for each x in the domain of φ, 1

h(x,φ(x))
is some number, and

equality is maintained if we multiply both sides of (2.71) by this number. Therefore
(2.70) is satisfied for all x in the domain of φ, so φ is a solution of (2.68). Thus every
solution of (2.69) whose graph lies in R is also a solution of (2.68) whose graph lies
in R.
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This completes the argument that multiplying by h has not changed the set of
solutions whose graphs lie in R. The argument that operation (i) in Definition 2.30
does not change this set of solutions is similar, and is left to the student.

We mention that it is possible for two differential equations to be equivalent
without being algebraically equivalent. Performing operations other than those in
Definition 2.30 does not always change the set of solutions.31 But because they might
change the set of solutions, any time we perform one of these “unsafe” operations we
must check, by some other method, that we properly account for any lost solutions
or spurious solutions.

Students should already be familiar with this fact from their experience with
separable equations. For example, in passing from equation (2.63) to (2.64), we
potentially lose any solution whose graph intersects the horizontal line {y = 0} or
the horizontal line {y = 1}. Are there any such solutions? Yes: the two constant
solutions y ≡ 0 and y ≡ 1, whose graphs happen to be exactly these two horizontal
lines.

When we are dealing with separable equations dy
dx

= g(x)p(y), and there is any
number r for which p(r) = 0, when we separate variables we don’t just potentially
lose solutions, we always lose solutions (unless we make an error later in the process).
For every number r for which p(r) = 0, the constant function y = r is a solution that
separation of variables, carried out with no errors, cannot find32. But fortunately, it
finds all the others (in implicit form).

We can see why in the context of Example 2.31. The right-hand side of (2.63) is
a function of y whose partial derivative with respect to y is continuous everywhere.
Therefore for every initial-condition point (x0, y0) in the xy plane, the fundamental
Existence and Uniqueness Theorem for initial-value problems applies, and so through
each such point there is the graph of one and only one maximal solution. If there were
a non-constant solution of (2.63) whose graph intersected the graph of the constant
solution y ≡ 1 (the line {y = 1}), say at the point (x0, 1), we would have a con-
tradiction to uniqueness of the solution of the IVP with differential equation (2.63)
and with initial condition y(x0) = 1. Similarly, no non-constant solution of (2.63)
can have a graph that intersects the graph of the constant solution y ≡ 0 (the line
{y = 0}). Therefore the graph of every non-constant solution lies entirely in one of
the three regions mentioned in Example 2.31. Since equations (2.63) and (2.64) are
algebraically equivalent on each of these three regions, the general solution of (2.64)
is precisely the set of all solutions of (2.63) other than the two constant solutions that
we have already accounted for.

31For example, it can be shown that the DEs (2.65) and (2.66) have the same general solution, of
which an implicit form is the family of equations (y + 4x)3(y − x)2 = C.

32Unfortunately it is quite common, even in textbooks, to make a pair of canceling errors in solving
separable equations, leading to the false impression that the separation-of-variables procedure of
variables may lose only some of the constant solutions, when in fact it always loses all of them if no
mistakes are made.
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Thus, if we manage to solve (2.64)—which we leave the student to do—and then
add to its general solution the two constant functions y ≡ 0 and y ≡ 1, we obtain all
solutions of (2.63).

Let us now look at the algebraic-equivalence concept for some linear DEs.

Example 2.33 The equations

dy

dx
+ 3y = sinx (2.72)

and

e3x dy

dx
+ 3e3xy = e3x sinx (2.73)

are algebraically equivalent on the whole xy plane. The second equation can be
obtained from the first by multiplying by e3x, which is nowhere zero. Similarly, the
first equation can be obtained from the second by multiplying by e−3x, which is
nowhere zero.

The student familiar with integrating-factors will recognize that the e3x in the
example above is an integrating factor for the first equation. To solve linear DEs
by the integrating-factor method, the only functions we ever need to multiply by are
functions of x alone. Of course, every such function can be viewed as a function of
x and y that simply happens not to depend on y. More explicitly, given a function
one-variable function µ, we can define a two-variable function µ̃ by µ̃(x, y) = µ(x).
If µ(x) is nonzero for every x in an interval I, then µ̃(x, y) is nonzero at every (x, y)
in the region I ×R (an vertical strip, infinite in the ±y-directions). So we will add a
bit to Definition 2.30 to have language better suited to linear equations:

Definition 2.34 We say that two linear differential equations, with independent
variable x and dependent variable y, are algebraically equivalent on an interval I if
they are algebraically equivalent on the region I×R. This happens if and only if one
equation can be obtained from the other by the operations of (i) adding to both sides
of the equation either a function of x that is defined at every point of the interval I,
or y times such function of x, or dy

dx
times such a function of x; and/or (ii) multiplying

both sides of the equation by a function of x that is defined and nonzero at every
point of the interval I.

Example 2.35 The equations

x
dy

dx
− 2y = 0 (2.74)

and
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x3 dy

dx
− 2x2y = 0 (2.75)

are algebraically equivalent on the interval (0,∞), and also on the interval (−∞, 0),
but not on (−∞,∞) or on any other interval that includes 0. (Thus, in accordance
with Definition 2.30, we do not simply call them “algebraically equivalent”; we specify
an interval on which they are algebraically equivalent.) The second can be obtained
from the first by multiplying by x2, which satisfies the “nowhere zero” criterion on
any interval not containing 0, but violates it on any interval that includes 0.

The first equation can be obtained from the second by multiplying by x−2, which
is not zero anywhere, but does not yield a function of x on any interval that contains
0.

Example 2.36 The equations

x
dy

dx
− 2y = 0 (2.76)

(the same equation as (2.74) and

x−2 dy

dx
− 2x−3y = 0 (2.77)

are algebraically equivalent on the interval (0,∞), and also on the interval (−∞, 0),
but not on (−∞,∞) or on any other interval that includes 0. In fact, the second
equation does not even make sense on any interval that includes 0. The second
equation can be obtained from the first by multiplying by x−3, which is not zero
anywhere, but is not defined at x = 0, hence does yield a function that we can
multiply by on any interval that includes 0.

The first equation can be obtained from the second by multiplying by x3, which
is defined for all x, but violates the “nowhere zero” condition on any interval that
contains 0.

In the context of linear DEs, fact (2.67) reduces to the following simpler state-
ment:

Two linear DEs that are algebraically equivalent
on an interval I have exactly the same solutions on I.

}
(2.78)

Two linear DEs that are not algebraically equivalent on an interval I may or may
not have the same set of solutions on I. When we manipulate a linear DE in such a
way that we “turn it into” an algebraically inequivalent DE, we run the risk that we
will not find the true set of solutions. The next example illustrates this trap.
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Example 2.37 Find the general solution of

x
dy

dx
− 2y = 0 (2.79)

(the same equation as (2.76) and (2.74)).
Since this is a linear equation, our first step is to “put it in standard linear form”

by dividing through by x. This yields the equation

dy

dx
− 2

x
y = 0. (2.80)

However, (2.79) and (2.80) are not algebraically equivalent on the whole real line, but
only on (−∞, 0) and (0,∞). Equation (2.80) does not even make sense at x = 0,
while (2.79) makes perfectly good sense there.33

As the student may verify, equation (2.80) has an integrating factor µ(x) = x−2.
Putting our brains on auto-pilot, we multiply through by x−2, and write

(x−2y)′ = 0,

=⇒
∫

(x−2y)′dx =

∫
0 dx,

=⇒ x−2y = C,

=⇒ y = Cx2. (2.81)

(Even worse than putting our brains on auto-pilot is to ignore warnings to learn
the integrating-factor method rather than to memorize a formula it leads to for the
general solution of a first-order linear DE in “most” circumstances. That formula has
its limitations and will also lead, incorrectly, to (2.81).)

Neither in the original DE (2.79) nor in (2.81) do we see any of the clues we are
used to seeing, such as a “ 1

x
”, that warn us that there may be a problem with (2.81)

at x = 0. (There were clues in the intermediate steps, in which negative powers of x
appeared, but we ignored them.) The functions given by (2.81) form a 1-parameter
family of functions defined on the whole real line, and it is easy to check that each
member of this family is a solution of (2.79). We have been taught that the general
solution of a first-order linear DE is a 1-parameter family of solutions—under certain
hypotheses. (We have ignored the fact that those hypotheses were not met, however.)
Having found what we expected to find, we write “y = Cx2” as our final, but wrong,
answer.

33 Standard terminology related to this problem is singular point. Roughly speaking, a first-order
linear DE does not “behave well” on an interval I if, when the DE is put in standard linear form
dy
dx + p(x)y = g(x), there is a point x0 ∈ I for which limx→x0+ |p(x)| = ∞ or limx→x0− |p(x)| = ∞.
Such points x0 are called singular points of the linear DE. The point x = 0 is a singular point of
both (2.79) and (2.80).
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Let us go back to square-one and correct our work. The transition from equation
(2.79) to (2.80) involves dividing by x, and therefore is not valid on any interval
that contains 0. These two equations are algebraically equivalent on (0,∞) and on
(−∞, 0), and therefore have the same solutions on these intervals. But the general
solution of (2.79) might include solutions on intervals that contain 0, while the general
solution of (2.80) cannot.

We can still use the basic procedure that led us to (2.81); we just have to be
more careful with it. Auto-pilot will not work.

Because (2.80) makes no sense at x = 0, we must solve it separately on (−∞, 0)
and (0,∞). We can do the work for both of these intervals simultaneously, as long
as we keep track of the fact that that’s what we’re doing.

So suppose φ is a differentiable function on either on I = (0,∞) or on I =
(−∞, 0), and let y = φ(x). On I, x−2 is an integrating factor. Multiplying both
sides of our equation on I by x−2, we find that φ is a solution of (2.80) if and only
if (x−2y)′ = 0. Because I is an interval, (x−2y)′ = 0 if and only if x−2y is constant.
Therefore:

• φ is a solution of (2.80) on (0,∞) if and only if there is a constant C for which
x−2φ(x) ≡ C; equivalently, for which φ is given by

φ(x) = Cx2. (2.82)

• Exactly the same conclusion holds on the interval (−∞, 0).

Thus the general solution of (2.80) on (0,∞) is

y = Cx2, x > 0, (2.83)

while the general solution of (2.80) on (−∞, 0) is

y = Cx2, x < 0. (2.84)

Now return to the equation we originally were asked to solve, (2.79), and suppose
that φ is a solution of this equation on (−∞,∞). (The argument we are about to give
would work on any interval containing 0.) Let φ1 be the restriction of φ to the domain-
interval (0,∞), and let φ2 be the restriction of φ to the domain-interval (−∞, 0).
Since (2.79) and (2.80) are algebraically equivalent on (0,∞), φ1 must be one of the
solutions given by (2.83). Thus there is some constant C1 for which φ1(x) = C1x

2.
Similarly, φ2 must be one of the solutions given by (2.84), so φ2(x) = C2x

2.
Therefore φ(x) = C1x

2 for x > 0, and φ(x) = C2x
2 for x < 0. But we assumed

that φ was a solution on (−∞,∞), so it also has a value at 0. We can deduce this
value by using the fact that every solution of an ODE is continuous on its domain
(since, by definition, solutions are differentiable functions, and differentiable functions
are continuous). Therefore φ(0) = limx→0 φ(x). Whether we approach 0 from the left
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(using φ(x) = C2x
2) or the right (using φ(x) = C1x

2), we get the same limit, namely
0. Hence φ(0) = 0.34 Since 0 also happens to be the value of C1x

2 at x = 0 (as well as
the value of C2x

2 at x = 0), we can write down a formula for φ in several equivalent
ways, one of which is

φ(x) =

{
C1x

2 if x ≥ 0,
C2x

2 if x < 0,
(2.85)

(We could have chosen to absorb the “x = 0” case into the second line instead of the
first, or to use both “≥ 0” in the top line and “≤ 0” in the bottom line, since that
would not lead to any inconsistency. Or we could have chosen to write a three-line
formula, with one line for x > 0, one line for x = 0, and one line for x < 0. All of
these ways are equally valid; we just chose one of them.)

Conversely, as the student may check, every function of the form (2.85) is a so-
lution of (2.79). Therefore the general solution solution-set of (2.79) on (−∞,∞) is
the two-parameter family of functions given by (2.85), with C1 and C2 arbitrary con-
stants35. This collection of solutions contains all the solutions on every other interval,
in the sense that the general solution on any interval I is obtained by restricting the
functions (2.85) to the interval I. (For the student who read and understood the ma-
terial on maximal solutions: the two-parameter family (2.85) is the general solution
of (2.79) as defined in Definition 2.22.)

We do not want the previous example to give the student the wrong impression.
For the vast majority, if not 100%, of nth-order linear DEs you are likely to encounter
in your first course on DEs, you will be shown how to solve them (or asked to solve
them) only on intervals for which the general solution solution-set is an n-parameter
family of functions. You are unlikely to see a two-parameter family of functions as

34Another way to find the value of φ(0) in this example is as follows. Since φ is differentiable on its
domain, the whole real line, φ′(0) is some real number. Whatever this value is, when we plug x = 0
and y = φ(x) into (2.79), the term “x dy

dx” becomes 0× φ′(0), which is 0. Hence φ(0) = y(0) = 0.
While this second method works for (2.79), it does not work for (2.75)—which the student will

later be asked to solve—but the first method we presented does.
35Some authors, with a different definition of “general solution”, would say that the first-order

linear equation (2.79) does not have a general solution on (−∞,∞), because the set of all solutions on
(−∞,∞) is a two-parameter family rather than a one-parameter family. To the author of these notes,
this seems an odd convention to apply to a solution-set with a completely systematic description.

Note to instructors: The solution-set of any homogeneous linear DE on any interval is a vector
space. We already show this to our students, in different language (0 is a solution, and any linear
combination of solutions is a solution). It does not make sense to me to say that the DE does not
have a general solution if the dimension of this vector space happens not to be the same as the order
of the DE. It makes far more sense to me to define the general solution on an interval to be the set of
all solutions on that interval (especially for a linear DE), and simply teach, as we already do—usually
without the vector-space terminology—that for a standard-form linear nth-order homogeneous DE
on an interval on which all of the coefficients are continuous, the general solution is a vector space
of dimension n.
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the general solution of a DE unless the equation is second-order. Example 2.37 is the
exception, not the rule. But we wanted the student to see another example of the
perils of what can happen when algebraic equivalence is not maintained during the
manipulation of equations.

As mentioned earlier, algebraically inequivalent linear DEs do not always have
different solution-sets. The student should test his/her understanding of the example
above by showing that equations (2.74) and (2.75) have the same set of solutions.

2.6 First-order equations in differential form

Definition 2.38 A differential in the variables (x, y) is an expression of the form

M(x, y)dx+N(x, y)dy (2.86)

where M and N are functions defined on some region in R2. We often abbreviate
(2.86) as just

Mdx+Ndy, (2.87)

leaving it understood that M and N are functions of x and y. When a region R is
specified, we call Mdx+Ndy a differential on R.

The functions M,N in (2.86) and (2.87) are called the coefficients of dx and dy
in these expressions.

The following definition provides an important source of examples of differentials.

Definition 2.39 (a) If F is a continuously differentiable function on a region R (i.e.
if both first partial derivatives of F are continuous on R), and the variables we use
for R2 are x and y, then the differential of F on R is the differential dF defined by

dF =
∂G

∂x
dx+

∂G

∂y
dy. (2.88)

(b) A differential Mdx+Ndy on a region R is called exact on R if there is some
continuously differentiable function F on R for which Mdx+Ndy = dF on R.

Note that the “continuously differentiable” requirement in part (b) implies that
the coefficient functions M,N in any exact differential are continuous.

Note that we have not yet ascribed meaning to “dx” or “dy”; effectively, they
are just place-holders for the functions M and N in (2.86) and (2.87). Similarly, so
far the expression “Mdx + Ndy” is just notation; its information-content is just the
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pair of functions M,N (plus the knowledge of which function is the coefficient of dx
and which is the coefficient of dy).

You (the student) may have come across the noun “differential” in your previous
calculus courses. The sense in which we use this noun in these notes is more sophis-
ticated than the notion used in Calculus 1-2-3. (For interested students, Section 3.1
discusses what a differential actually is, in the sense used in these notes.) There is a
relation between the two notions, but it is beyond the scope of these notes to state
exactly what that relation is.

If Mdx + Ndy is a differential on a region R, and (x0, y0) is a point in R, we
call the expression M(x0, y0)dx+N(x0, y0)dy the value of the differential Mdx+Ndy
at (x0, y0). However, this “value” is not a real number; so far it is only a piece of
notation of the form “(real number times dx) + (real number times dy)”, and we still
have attached no meaning to “dx” and “dy”. The value of a differential at a point
is actually a certain type of vector, but not the type you learned about in Calculus
3. (The type of vector that it is will not be described in these notes; the necessary
concepts require a great deal of mathematical sophistication to appreciate, and are
usually not introduced at the undergraduate level.36)

We next define rules for algebraic operations involving differentials. These def-
initions are necessary, rather than being “obvious facts”, because so far differentials
are just pieces of notation to which we have attached no meaning. However, in
an introductory course on DEs, it is generally permissible for students
to treat the rules in Definition 2.40 as “obvious facts”. If you have trouble
understanding why Definition 2.40 is necessary, don’t worry about it; just make sure
that the way you manipulate differentials agrees with these rules.

Definition 2.40 Let R be an open set in R2, let x, y be the usual coordinate-
functions on R2, and let M,N,M1,M2, N1, N2, and f be functions defined on R.
(Thus Mdx+Ndy,M1dx+N1dy, and M2dx+N2dy are differentials on R.) Then we
make the following definitions for differentials in (x, y).

1. Equality of differentials: M1dx + N1dy = M2dx + N2dy on R if and only if
M1(x, y) = M2(x, y) and N1(x, y) = N2(x, y) for all (x, y) ∈ R.

2. Abbreviation by omitting terms with coefficient zero:

Mdx = Mdx+ 0dy,

Ndy = 0dx+Ndy.

36However, for students who have taken enough linear algebra to know what the dual of a vector
space is, the value of a differential at a point can be treated as an element of the dual space of R2.
Note to instructors: More precisely, a differential at a point is a covector or cotangent vector, an
element of the cotangent space of R2 at that point.
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3. Abbreviation by omitting the coefficient 1 (the constant function whose constant
value is the real number 1):

dx = 1dx,

dy = 1dy.

4. Insensitivity to which term is written first:

Ndy +Mdx = Mdx+Ndy.

5. Addition of differentials:

(M1dx+N1dy) + (M2dx+N2dy) = (M1 +M2)dx+ (N1 +N2)dy.

6. Subtraction of differentials:

(M1dx+N1dy)− (M2dx+N2dy) = (M1 −M2)dx+ (N1 −N2)dy.

7. Multiplication of a differential by a function of (x, y):

f(Mdx+Ndy) = fMdx+ fNdy.

(Here, the left-hand side is read “f times Mdx+Ndy”, not “f of Mdx+Ndy”.
The latter would make no sense, since f is a function of two real variables, not
a function of a differential.)

8. The zero differential on R is the differential 0dx+0dy, which we often abbreviate
just as “0”. (We tell from context whether the symbol “0” is being used to
denote the real number zero, the constant function whose value at every point is
the real number zero, or the zero differential. In the equation “0dx+ 0dy = 0”,
context tells us that each zero on the left-hand side of the equation is to be
interpreted as the constant function with constant value 0, while the zero on the
right-hand side is to be interpreted as the zero differential37.

37As a general rule, it’s a bad idea to use the same symbol to represent different objects, and
it’s usually a particularly awful idea to let the same symbol have two different meanings in the
same equation. We allow certain—very few—exceptions to this rule, in order to avoid cumbersome
notation, such as having three different symbols such “0R”, “0fcn,” and “0diff ,” fot the zero number,
zero function, and zero differential respectively.
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Note that our definition of subtraction is the same as what we would get by
combining the operations “addition” and “multiplication by the constant function
−1”:

(M1dx+N1dy)− (M2dx+N2dy) = (M1dx+N1dy) + (−1)(M2dx+N2dy).

Note also that we do not define the product or quotient of two differentials. In
particular we don’t (yet) attempt to relate the differentials dx and dy to a derivative
dy
dx

. (When we do relate them later, dy
dx

still will not be the quotient of two differentials.)

Finally, we are ready to bring differential equations back into the picture!

Definition 2.41 A differential equation in differential form, with variables (x, y), is
an equation of the form

one differential in (x, y) = another differential in (x, y). (2.89)

We write such an equation only when where there is some region R on which both
differentials are defined. When the region R is specified, we use phrasing like “a DE
on R in differential form” or “a DE in differential form on R.”

Example 2.42 Whenever we separate variables in a separable, derivative-form DE,
we go through a step in which we write down a differential-form DE, such as

ydy = exdx. (2.90)

A very important difference between a DE in derivative form and a DE
in differential form is that a DE in differential form has no “independent
variable” or “dependent variable”. The two variables are on an equal footing.
We do have a “first variable” and “second variable” (for which we are using the letters
x and y, respectively, in these notes), but only because we need to put names to our
first and second variables in order to specify the functions M and N (e.g. to write
a formula such as “M(x, y) = x2y3”). Do not make the mistake of thinking that
whenever you see “x” and “y” in a DE, x is automatically the independent variable
and y the dependent variable. Also, even when it’s been decided that the letters x
and y will be used, there is no law that says x has to be the first variable and y the
second. In these notes we choose the conventional order so that the student will feel
on more familiar ground. But notice that if we were to choose different names for our
variables, and for the sake of being ornery write something like
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ℵ dℵ = eada,

you would not have a clue as to which variable to call the first—nor would it matter
which choice you made.

Here is the differential-form analog of Definition 2.30:

Definition 2.43 We say that two DEs in differential form, with variables (x, y), are
algebraically equivalent on a region R if one can be obtained from the other by the
operations of (i) addition of differentials and/or (ii) multiplication by a function of
(x, y) that is defined at every point of R and is nowhere zero on R.

So, for example, each of the differential-form ODEs

2x2ydx = tan(x+ y)dy,

2x2ydx− tan(x+ y)dy = 0,

and

ex(2x2ydx− tan(x+ y)dy) = 0,

is algebraically equivalent to the other two on R2 (and on any region in R2). On the
open set {(x, y) | x 6= 0} these equations are also algebraically equivalent to

x(2x2ydx− tan(x+ y)dy) = 0, (2.91)

but are not algebraically equivalent to (2.91) on the whole plane R2, since the plane
contains points at which x = 0.

Note that by subtracting the differential on the right-hand side of (2.89) from
both sides of the equation, we obtain an algebraically equivalent equation of the form

Mdx+Ndy = 0.

Later, after we have defined “solution of a DE in differential form”, we will see that
algebraically equivalent equations have the same solutions. Therefore we lose no
generality, in our discussion of solutions of DEs in differential form, if we restrict
attention to equations of the form (2.93). (However, there is one instance in which
it is convenient to consider differential-form DEs that have a nonzero term on each
side: the case of separated variables, of which (2.90) is an example.)

In our discussion of derivative-form DEs, we defined, and frequently used, the
notion of solution curve. Soon we will define solution curve for differential-form DEs.
This notion is even more important for differential-form DEs than it is for derivative-
form DEs. But defore defining solution curve of a differential-form DE, we need to
discuss the basics of curves in general.
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2.6.1 Curves, parametrized curves, and smooth curves

In Calculus 2 and 3 you learned about parametrized curves (not necessarily by that
name, however). We review the concept and some familiar terminology, and introduce
what may be some unfamiliar terminology.

Definition 2.44 A parametrized curve or curve-parametrization in R2 is an ordered
pair of continuous real-valued functions (f, g) defined on an interval38. The set

{(f(t), g(t)) | t ∈ I} (2.92)

(where I is an interval) is called the range, trace, or image of the parametrized curve.
A curve in R2 is a point-set C ⊂ R2 that is the image of some parametrized

curve39.
Given a curve C, if (f, g) is a parametrized curve with image C, then we say that

(f, g) is a parametrization of C or that (f, g) parametrizes C.

In other words, a curve C is a point-set that is “traced out” by the parametric
equations

x = f(t),

y = g(t),

as t ranges over a parameter-interval; hence the terminology “trace”. Unfortunately,
the word “trace” has several different meanings in mathematics, each of them com-
pletely unrelated to the others. The next course in students encounter this word it
is likely to mean something totally different, so it will not be our preferred term in
these notes. The word range is often used by teachers because the student is familiar
with it from precalculus and Calculus 1. The concept is the same here: the range
of (f, g), thought of as a single R2-valued function γ (defined by γ(t) = (f(t), g(t)))
rather than as a pair of real-valued functions. A synonym for range is image, which is
the term we will use in these notes. For vector-valued functions (and other functions
more exotic than real-valued functions), mathematicians generally prefer “image” to
“range” because it is more geometrically suggestive.

Note that we are now using the letter I for a parameter-interval (“t-interval”),
not an x-interval.

Most of the time it is simpler to write “(x(t), y(t))” than to introduce the extra
letters f, g and write “(f(t), g(t))” for the point in the xy plane defined by “x =

38In these notes, intervals are required to have more than one point; we never mean “degenerate
intervals” [a, a].

39The “C” used in these notes for a curve is in a different font from the C that we use for a
constant.
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f(t), y = g(t)”. We will often use the simpler notation (x(t), y(t)) when there is no
danger of misinterpretation. Thus we we also sometimes write “γ(t) = (x(t), y(t))”.
When we do not want to introduce a name (e.g. γ) for such an R2-valued function, we
will say “the parametrized curve (or curve-parametrization) t 7→ (x(t), y(t)).” (Read
the symbol “7→” as “goes to”.)

Note that in Definition 2.44, we do not require the interval I to be open. This is
so that we can present certain examples below simply, without bringing in too many
concepts at once that may be new to the student. Eventually, we will want to consider
only parametrized curves that have an open domain-interval, but we will not impose
that requirement just yet.

Example 2.45 Let x(t) = 2 cos t, y(t) = 2 sin t, t ∈ [0, 2π]. Then for all t we have
x(t)2+y(t)2 = 4, so the trace of this parametrized curve lies along the circle x2+y2 = 4.
It is not hard to see that every point on the circle is in the image of this parametrized
curve, so the curve traced out by the parametrized curve t 7→ (x(t), y(t)), t ∈ [0, 2π],
is the whole circle x2 + y2 = 4. Had we used the same formulas for x(t) and y(t),
but restricted t to the interval [0, π], the range would still have lain along the circle
x2 + y2 = 4, but would have been only a semicircle. Had we used the same formulas,
but used a slightly larger, open interval, say (−0.1, 2π + 0.1), then we would have
obtained the whole circle again, with some small arcs traced-out twice.

Every curve has infinitely many parametrizations. For example, “x(t) = 2 cos 7t,
y(t) = 2 sin 7t, t ∈ [0, 2π/7]” traces out the same curve as in first part of the example
above. So does “x(t) = 2 cos t3, y(t) = 2 sin t3, t ∈ [−π1/3, π1/3]”.

Definition 2.46 A curve-parametrization (x(t), y(t)), t ∈ I is called

• differentiable if the derivatives x′(t), y′(t) exist40 for all t ∈ I;

• continuously differentiable if it is differentiable and x′(t), y′(t) are continuous in
t; and

• non-stop if it is differentiable and x′(t) and y′(t) are never simultaneously zero
(i.e. there is no t0 for which x′(t0) = 0 = y′(t0)).

40When I contains an endpoint (i.e. I is of the form [a, b), [a, b], or (a, b], the first two of which
contain their left endpoints and the last two of which contain their right endpoints), then derivative at
an endpoint that I contains is interpreted as the appropriate one-sided derivative. Thus, if I contains

a left endpoint a, then what we mean by “x′(a)”, or “dx
dt at a”, is limt→a+

x(t)−x(a)
t−a . Similarly if I

contains a right endpoint b, then what we mean by “x′(b)”, or “dx
dt at b”, is limt→b−

x(t)−x(b)
t−b .
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Definition 2.47 A curve C in R2 is smooth if for every point (x0, y0) on the curve,
there is a number ε0 > 0 such that for all positive ε < ε0, the portion of C lying
inside the open square of side-length ε centered at (x0, y0) admits a continuously
differentiable, nonstop parametrization, with domain an open interval.

“Admits”, as used in Definition 2.47, is essentially another word for “has”. We
use the word “admits” because “has” might mislead the student into thinking that the
curve has already been dropped on his/her plate with a continuously differentiable,
nonstop parametrization; “admits a continuously differentiable, nonstop parametri-
zation” does not lend itself to this misinterpretation.

The open-interval requirement at the end of Definition 2.47 implies that if a curve
contains an endpoint, then the curve does not meet our definition of “smooth curve”.
This is necessary in order to make various other definitions and theorems reasonably
short; curves with endpoints are messier to handle.

The student should re-read the end of Example 2.45 to convince him/herself that
a circle meets our definition of “smooth curve”.

Observe that Definition 2.47 uses a “windowing” idea similar to the one that we
used to talk about implicitly-defined functions in Section 2.2. We will later give an
equivalent definition of “smooth curve” that is even more reminiscent of that earlier
discussion.

Every curve admits parametrizations that are not continuously differentiable
and/or are not non-stop. Every smooth curve admits continuously differentiable
parametrizations that do not meet the “non-stop” criterion, as well as those that do
meet this criterion. But curves with corners, such as the graph of y = |x|, admit no
continuously differentiable, nonstop parametrizations. We can parametrize the graph
of y = |x| continuously differentiably—for example, by t 7→ (t3, |t|3), with parameter-
interval (−∞,∞)—but observe that for this parametrization, x′(0) = 0 = y′(0), so
the parametrization is not non-stop. The corner forces us to stop in order to instan-
taneously change direction.

The graph of y = |x| is one example of a non-smooth curve. Other examples of
non-smooth curves are:

• The letter X. You can draw this without your pencil leaving the paper, so it sat-
isfies the definition of “curve”. (When you draw a curve C, you are parametriz-
ing C using time as the parameter. The condition “without your pencil leaving
the page” corresponds to the domain of the parametrization being an interval.
Nothing in the definition of “parametrized curve” prohibits you from stopping,
reversing direction, and retracing parts of the curve that you’ve already drawn).
But you you need to violate the “non-stop” criterion in order to draw the X.

• A figure-8. The whole curve does admit a continuously differentiable, non-stop
parametrization, but the point (x0, y0) at which the curve crosses itself causes
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the definition of “smooth” not to be met. For small ε, the portion of the curve
that lies in the square of side ε centered at (x0, y0) is essentially an X, and has
the same problem that the X did.

Warning about terminology. Many calculus textbooks refer to a continously
differentiable, non-stop parametrization as a smooth parametrization. This usage of
“smooth” is unfortunate. It conflicts with the modern meaning of “smooth function”
in advanced mathematics41. A preferable one-word term is “regular”, and the only
reason we are not using it in these notes is that the meaning of “regular” is not
self-evident, and we did not want to present the student with extra terminology to
remember. “Regular” is flexible term that mathematicians use with a contextually
varying meaning, which usually is “having the most common features” or “having
no nasty or inconvenient features” (where the context determines what features are
important). The meaning of non-stop is self-evident (regarding γ′(t) = (x′(t), y′(t))
as the velocity vector v(t) at time t associated with the parametrization, “non-stop”
is the condition that the velocity v(t) is not the zero vector for any t), but the author
of these notes has never seen it in any textbook42.

We make one more definition before moving on to the next section.

Definition 2.48 A smooth curve C lying in a region R in R2 is inextendible in R if
either

1. C is a closed curve (i.e. C has a continuously differentiable, non-stop paramet-
rization γ, with domain a closed interval [a, b], for which γ(a) = γ(b)), or

2. C is an “open curve without endpoints” (i.e. C has a continuously differentiable,
non-stop parametrization with domain an open interval), and there is no non-
stop, continuously differentiable, parametrized curve γ whose image lies in R

41Note to instructors: in differential topology and differential geometry, “smooth parametrization”
simply means “Ck map” (from an open interval to R2, in the setting of these notes) for some pre-
specified k, usually 1 or∞. There is no requirement that the parametrization be non-stop to be called
smooth. Even constant maps, whose images are a single point, are considered smooth parametrized
curves—and it is indispensable to the definition of “tangent space” to include these when one talks
about the collection of all smooth parametrized curves passing through a given point.

42Note to instructors: in differential topology and geometry, what we are calling here a (con-
tinuously differentiable) non-stop parametrization is called an immersion, so one would never see
“non-stop” in a research paper. Introductory courses and textbooks would be the only places to
use this term. When teaching about curves in Calculus 3, I use “non-stop” as a separate condition,
rather than part of the definition of“smooth parametrization”, because (i) it is pedagogically useful,
(ii) it is more self-explanatory than the calculus-textbook definition of “smooth parametrization”,
which has the awkward feature that (with this bad definition) all smooth curves admit non-smooth
parametrizations, (iii) the calculus-textbook definition of “smooth parametrization” conflicts with
the definition used by mathematicians who specialize in studying smooth topological or geometric
objects, and (iv) the term “non-stop” presents no such conflict.
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and contains C as a proper subset.43

A smooth curve that “runs off to infinity in both directions”, like either branch
of the hyperbola xy = 1, is inextendible in any region that contains it. For a smooth
curve that is not closed, and does not “run off to infinity in both directions”, “in-
extendible” essentially means that we cannot add points at either end of the curve
without leaving the region R. For example, the portion of the graph of y = x that
lies in the region R between the lines y = 1 and y = −1 is inextendible in R. The
portion of the same graph that lies in the open first quadrant R1 is inextendible in
R1.

2.6.2 Solution curves for DEs in differential form

Now we get to the heart of the difference between DEs in derivative form and those in
differential form: unlike a DE in derivative form, a DE in differential form is not an
equation that is looking for a function. It is an equation that is looking for a curve.

Definition 2.49 A solution curve 44 of a differential equation

M(x, y)dx+N(x, y)dy = 0 (2.93)

on a region R is a smooth curve C, contained in R, for which some continuously
differentiable, non-stop parametrization γ(t) = (x(t), y(t)) of C satisfies

M(x(t), y(t))
dx

dt
+N(x(t), y(t))

dy

dt
= 0 (2.94)

for all t in the domain-interval I of the parametrization. In this context, we will call
γ a parametric solution of (2.93).45

When no region R is specified, it is understood that the region of interest is
the interior of the common implied domain of M and N . Here, “common implied
domain” means the set of points at which both M and N are defined, and “interior”
means that we don’t count points that are on the boundary of the common domain46.

43The condition that C is an “open curve without endpoints” turns out to be redundant in this
part of the definition, but is included here as a visual aid.

44It would be more logical to use the term solution for what we are calling solution curve. However,
this would conflict with the meaning of “solution of a DE in differential form” that students are
likely to see used in a textbook. Even if not stated explicitly, the meaning in a textbook is likely to
be close to Definition 2.55 later in these notes.

45 The terminology “solution curve” and “parametric solution” for a DE in differential form were
invented for these notes; they are not standard.

46Note to instructor: The author has avoided giving a careful definition of “boundary” here, and
therefore of “interior”, to avoid distracting the student.
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Note that we have not yet defined “solution of a DE in differential form”; we
have defined only solution curves and parametric solutions. The definition of solution
for such DEs is deferred to Section 2.6.4.

As we noted previously, in a differential-form DE (2.93) there is neither an inde-
pendent nor a dependent variable; x and y are treated symmetrically. This symmetry
is preserved in (2.94), but in a surprising way: in (2.94), both x and y are dependent
variables! The independent variable is t—a variable that is not even visible in (2.93).

Definition 2.49 implies more about solution curves and parametric solutions than
is obvious just from reading the definition.

To start with, equation (2.94) has a geometric interpretation. Let (x(t), y(t)) be
a continuously differentiable, non-stop parametrization of some solution curve C of
Mdx + Ndy = 0. Let v(t) = γ′(t) = x′(t)i + y′(t)j, where i and j are the standard
basis vectors in the xy plane. Then v(t), the velocity-vector function associated with
the parametrization, is tangent to the smooth curve C at the point (x(t), y(t)). We
can rewrite equation (2.94) using the dot-product you learned in Calculus 3:

(M(x(t), y(t))i +N(x(t), y(t))j) ·v(t) = 0. (2.95)

This says that, for each t, the vector v(t) is perpendicular to the vectorM(x(t), y(t))i+
N(x(t), y(t))j. Thus for each point (x0, y0) on C, the velocity vector at that point (i.e.
v(t0), where (x(t0), y(t0)) = (x0, y0)) is perpendicular to M(x0, y0)i +N(x0, y0)j.

Suppose we have another non-stop parametrization of the same curve C. To
speak clearly of both parametrizations, we must temporarily abandon the notation
“(x(t), y(t))” in favor of (f1(t), g1(t)) (t ∈ I1) and (f2(t), g2(t)) (t ∈ I2). At a given
point (x0, y0), the velocity vectors v1,v2 coming from the two parametrizations will
be parallel, both being nonzero vectors tangent to C at that point. (I.e. if t1, t2 are
such that (f1(t1), g1(t1)) = (x0, y0) = (f2(t2), g2(t2)), then v2(t2) = cv1(t1) for some
nonzero scalar c.) But then

(M(x0, y0)i +N(x0, y0)j) ·v2(t2) = (M(x0, y0)i +N(x0, y0)j) ·cv1(t1)

= c (M(x0, y0)i +N(x0, y0)j) ·v1(t1)

= c 0

= 0.

Since this holds for all points (x0, y0) on C, it follows that the parametrization
x = f2(t), y = g2(t) also satisfies (2.94).47 Thus if one continuously differentiable, non-
stop parametrization of C satisfies (2.94), so does every other. Therefore, even though
Definition 2.49 requires only that there be some continuously differentiable, non-stop
parametrization of C satisfying (2.94), once we know that even one continuously

47This can also be shown using the Inverse Function Theorem that you may have learned in
Calculus 1, plus the Chain Rule.
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differentiable, non-stop parametrization of C has this property, they all do. Said
another way:

Every continuously differentiable, non-stop parametrization of a
solution curve of a differential equation Mdx+Ndy = 0 is a
parametric solution of this equation.

 (2.96)

This gets back to the statement we made just prior to Definition 2.49: that a DE
in differential form is looking for a curve. We did not say “parametrized curve”. A
curve is a geometric object, a certain type of point-set in the plane. The concept of
parametrized curve is needed to define which point-sets are curves and which aren’t.
It’s also needed to define many other features or properties of a curve, such as whether
a curve is a solution curve of a (given) DE in differential form. Any property that
is defined via parametrizations (such as being a solution curve of a DE in differen-
tial form) can potentially hold true for one parametrization but not for another. A
property defined in terms of parametrizations is intrinsic to a (smooth) curve C —
the point-set traced out by any parametrization— if and only if the property holds
true for all continuously differentiable, non-stop parametrizations of C. These are
the properties that are truly geometric. What statement (2.96) is saying is that the
property “I am a solution curve of this differential-form DE” is an intrinsic, geometric
property.

Although the concepts of “solution of a DE in derivative form” and “solution
curve of a DE in differential form” are fundamentally different—the former is a func-
tion (of one variable); the latter is a geometric object, a smooth curve—they are still
related to each other. We will see precisely what the relation is in a later section of
these notes. For now, we mention just that a solution curve of any derivative-form
DE in derivative form is a solution curve for a related differential-form DE. (We will
see make this precise in Section 2.8.) The converse is not true, because not every
smooth curve in R2 is the graph of a function of one variable (consider a circle).

Many smooth curves in R2 that are not graphs of one-variable functions can
still be expressed entirely or “mostly” as a union of graphs of equations of the form
“y = differentiable function of x.” But for many smooth curves, including those
that arise as solution curves of differential equations in differential form, this is often
neither necessary nor desirable48. This is another fundamental difference between
derivative-form DEs and differential-form DEs.

48We emphasize that this “neither necessary nor desirable” applies only to DEs that from the
start are written in differential form, such as in orthogonal-trajectories problems. When differential-
form equations are used as a tool to solve derivative-form equations, say with dependent variable
y and independent variable x, then it usually is desirable to write solutions in the explicit form “y
= differentiable function of x”—and your instructor may em require you to do this whenever it is
algebraically possible.
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Example 2.50 Consider the equation

xdx+ ydy = 0. (2.97)

Suppose we are interested in a solution curve of this DE that passes through the point
(0, 5). As the student may check, the parametrized curve

x(t) = 5 cos t,

y(t) = 5 sin t,

t ∈ [0, 2π], is a parametric solution. The solution curve it parametrizes is the circle
with equation x2 + y2 = 25. The circle is not the graph of a function of x, but it is a
beautiful smooth curve, and as far as the DE (2.97) is concerned, there is no reason
to exclude any point of it.

But we run into trouble if we try to express this curve using graphs of differ-
entiable functions of x alone. The circle can be expressed “mostly” as the union of
the graphs of y =

√
25− x2,−5 < x < 5, and y = −

√
25− x2,−5 < x < 5. (The

endpoints of the x-interval [−5, 5] must be excluded since d
dx

√
25− x2 does not exist

at x = ±5.) But we cannot get the whole circle.

2.6.3 Existence/uniqueness theorem for DEs in differential form

Recall that an initial-value problem, with dependent variable y and independent
variable x, consists of a derivative-form differential equation together with an initial
condition of the form y(x0) = y0. The differential-form analog of an initial-value
problem is a differential-form DE together with a point (x0, y0) of the xy plane. The
analog of “solution of an initial value problem” is a solution curve of a differential-form
DE that passes through the given point (x0, y0). In such a context we may (loosely)
refer to the point (x0, y0) as an “initial condition” or “initial-condition point”, and
to the combination “differential-form DE, together with point (x0, y0)” as an “initial-
value problem in differential form”. But because there is neither an independent
variable nor a dependent variable in a differential-form DE, this terminology is not
as well-motivated as it is for derivative-form DEs, where the terminology stems from
thinking of the independent variable as time.

Just as for derivative-form IVPs, there is an Existence and Uniqueness Theorem
for differential-form IVPs, which we will state shortly. To understand what’s behind
a restriction that will appear in the statement of this theorem, let us look again at
equation (2.95). Suppose (x0, y0) lies on a smooth solution curve C of Mdx+Ndy =
0. If M(x0, y0) and N(x0, y0) are not both zero, then w = M(x0, y0)i + N(x0, y0)j
is a nonzero vector, and (2.95) tells us that the velocity vector at (x0, y0) of any
continuously differentiable, non-stop parametrization of C must be perpendicular to
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w. Hence w completely determines the slope of the line tangent to C at (x0, y0). This
places a very strong restriction on possible solution curves through (x0, y0): there is
one and only one possible value for the slope of their tangent lines.

But if M(x0, y0) and N(x0, y0) are both zero, then M(x0, y0)i +N(x0, y0)j is the
zero vector, and every vector is perpendicular to it. Said another way, if (x(t), y(t))
is a parametrization of any smooth curve passing through (x0, y0), say when t = t0,
then (2.95) is satisfied at t = t0, and so is (2.94). There is no restriction at all on the
slope!

Therefore at such a point (x0, y0), in general we cannot expect solutions of the
differential equationMdx+Ndy = 0 to be as “predictable” as they are whenM(x0, y0)
and N(x0, y0) are not both zero. In this sense, the points (x0, y0) at which M(x0, y0)
and N(x0, y0) are both zero are “bad”, so we give them a special name:

Definition 2.51 A point (x0, y0) is a singular point of the differential Mdx+Ndy if
M(x0, y0) = 0 = N(x0, y0).49

Recall that a derivative-form DE, with independent variable x and dependent
variable y, is said to be in standard form if the DE is of the form

dy

dx
= f(x, y). (2.98)

If the graph of a solution of (2.98) passes through (x0, y0), then the slope of the graph
must be f(x0, y0). This is true even if the IVP

dy

dx
= f(x, y), y(x0) = y0 (2.99)

has more than one solution (which can happen if the hypotheses of the Existence
and Uniqueness Theorem for derivative-form IVPs are not met, e.g. if ∂f

∂y
is not

continuous at (x0, y0)). So in some sense, a singular point (x0, y0) of a differential
Mdx+Ndy is a worse problem for the differential-form IVP “Mdx+Ndy = 0 with
initial condition (x0, y0)” than we ever see for the derivative-form IVP (2.99). This is
another important difference between derivative-form DEs and differential-form DEs.

It is difficult to define “maximal solution curve” satisfactorily for an equation
Mdx+Ndy = 0 on a region in which Mdx+Ndy has a singular point. But in regions
free of singular points, there are no difficulties. We make the following definition:

Definition 2.52 Let R be a region in which the differential Mdx + Ndy has no
singular points. A solution curve C of the equation Mdx+Ndy = 0 is maximal in R
if C is inextendible in R (see Definition 2.48).

49“Singular point” here does not mean the same thing as in footnote 33.
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While it may appear that this definition could be made without the “no singular
points” assumption, it would not be a satisfactory definition, for technical reasons
that will not be discussed here.

We can now state the differential-form analog of the Existence and Uniqueness
Theorem for derivative-form initial-value problems:

Theorem 2.53 Suppose M and N are continuously differentiable functions on an
open region R in R2, and that Mdx + Ndy has no singular points in R. Then for
every point (x0, y0) ∈ R, there exists a unique solution curve of Mdx+Ndy = 0 that
that passes through (x0, y0) and is maximal in R.

Like the analogous theorem for derivative-form initial-value problems, this theo-
rem gives sufficient conditions under which a desirable conclusion can be drawn, not
necessary conditions. There are differential-form equations Mdx+Ndy = 0 that have
a unique intextendible solution curve through a point (x0, y0), even though (x0, y0) is a
singular point of the differential. But there are also differentials Mdx+Ndy for which
M and N are continuously differentiable in the whole xy plane, for which Mdx+Ndy
has a singular point (x0, y0), and for which the equation Mdx + Ndy = 0, on some
region R containing (x0, y0), has no solution curve through (x0, y0), or has several
inextendible solution curves through (x0, y0), or has infinitely many inextendible so-
lution curves through (x0, y0).

Under another name, singular points of exact differentials are familiar to students
who’ve taken Calculus 3:

Example 2.54 Suppose Mdx+Ndy is exact on a region R, and let F be a function
on R for which Mdx + Ndy = dF . Then M = ∂G

∂x
and N = ∂G

∂y
. Hence, for a given

point (x0, y0) ∈ R,

(x0, y0) is a singular point of dF

⇐⇒ M(x0, y0) = 0 = N(x0, y0),

⇐⇒ ∂G

∂x
(x0, y0) = 0 =

∂G

∂y
(x0, y0),

⇐⇒ (x0, y0) is a critical point of F.

Thus, the singular points of dF are exactly the critical points of F .

2.6.4 Implicit solutions of DEs in differential form

The fact that derivative-form and differential-form DEs are intrinsically very differ-
ent animals is generally not mentioned in DE textbooks. Consequently, textbooks’
definitions of “solution of a differential-form DE” tends to look very similar to their
definitions of “solution of a derivative-form DE”. Usually this is accomplished by say-
ing, early on, “We’re going to use the word ‘solution’ to refer to both ‘explicit’ and
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implicit solutions (of derivative-form DEs),” and then effectively take the definition of
“solution of a DE in differential form” to be “implicit solution of a related derivative-
form DE”.50 Since this is what students are most likely to see in a textbook, we make
here a similar definition of “(implicit) solution of a DE in differential form” that is
consistent with textbooks’ treatment of this concept, but relate it carefully to the
concepts we have developed earlier.

Definition 2.55 An equation

F (x, y) = 0 (or F (x, y)= any real number C0) (2.100)

is an implicit solution of a differential-form equation

M(x, y)dx+N(x, y)dy = 0 (2.101)

on a region R if
(i) the portion of the graph of (2.100) that lies in R contains a smooth curve,

and
(ii) every smooth curve in R contained in the graph of (2.100) is a solution curve

of (2.101).51

If R = R2 then we usually omit mention of the region, and say just that (2.100)
is an implicit solution of (2.101).

Remark 2.56 Note that we have not defined the term “solution of a DE in differen-
tial form”. The most sensible definition of “solution of a DE in differential form” is
what we have defined to be a solution curve of such a DE. We have used the two-word
phrase solution curve only for pedagogical reasons. But temporarily, let us call a so-
lution curve of a differential-form DE simply a solution of that DE; this will help with
the discussion of our next point: The fundamental differences between derivative-form
DEs and differential-form DEs make it awkward to come up with good terminology
for what equation (2.100) is in relation to (2.101). Because a curve is a point-set in
the plane, an equation of the form F (x, y) = 0 is actually a very explicit description of
a curve C (when this equation does define a curve): a point (x, y) is on C if and only
if F (x, y) = 0. “Implicitly-defined function” (of one variable, for DEs) is a perfectly
sensible concept and term; “implicitly-defined curve” is not. The only thing that is
really “implicit” about “implicit solution of a differential-form equation” as defined

50Note to instructors: The reason that we have a good relation at all between differential-form
ODEs and (certain) derivative-form ODEs is, literally, because 1 + 1 = 2. A curve in R2 has
both dimension 1 and codimension 1. Graphs of equations y = φ(x) have dimension 1. Graphs of
equations F (x, y) = 0 have codimension 1 (generically).

51Note to instructor: Observe that again, we do not assume that F is differentiable, or even
continuous. Of course any F we are likely to find by any standard method will be differentiable, but
for the purposes of concept and definition, that is beside the point.
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above, is that the equation (2.100) itself is not a solution of (2.101)—the solutions
of (2.101) related to (2.100) are smooth curves contained in the graph of equation
(2.100).

Example 2.57 The equation

xy = 1

is a solution of

ydx+ xdy = 0. (2.102)

The graph, a hyperbola, consists of two solution curves, one lying in the first quadrant
of the xy plane, the other lying in the third quadrant. One of the solution curves
admits the continuously differentiable, non-stop parametrization x(t) = t, y(t) =
1
t
, t ∈ (0,∞), while the other admits the continuously differentiable, non-stop para-

metrization x(t) = t, y(t) = 1
t
, t ∈ (−∞, 0).

More generally, for every real number C, the equation

xy = C

is a solution of the same DE (2.102). For most C, the graph is a hyperbola, but the
case C = 0 is exceptional. The graph of

xy = 0 (2.103)

is a pair of crossed lines, the x- and y-axes. Note that this graph is not a smooth curve,
nor is it the disjoint union of two smooth curves the way a hyperbola is (“disjoint”
meaning that the two curves have no points in common). We can verify that (2.103)
is indeed a solution of (2.102) by observing that the parametrized curves given by
x(t) = t, y(t) = 0, t ∈ R (a continuously differentiable, non-stop parametrization
of the x-axis) and x(t) = 0, y(t) = t, t ∈ R (a continuously differentiable, non-stop
parametrization of the y-axis) both satisfy

y(t)
dx

dt
+ x(t)

dy

dt
≡ 0.

So we can express the graph of xy = 0 as the union of two solution curves of (2.102)—
the graph of y = 0 and the graph of x = 0—but, unlike for the graph of xy = C, with
C 6= 0 we cannot do it without having the two solution curves intersect. The source
of this difference is that only for C = 0 does the graph of xy = C contain (0, 0), a
singular point of ydx+ xdy.
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Remark 2.58 You may wonder to what extent criterion (i) in Definition 2.55 is
necessary. An example of a graph that we would not want to call a solution curve of
any DE is the graph of x2+y2 = 0: the graph is a single point, and includes no smooth
curves at all. Obviously, we would also want to exclude graphs that consist of just
two points, just ten points, etc. Criterion (i) does this, but does it do anything else?
Could we get away with just excluding graphs that consist of a bunch of disconnected
points?

Pushing this question a little further: suppose that we have an equation F (x, y) =
0 whose graph in the open set R is a curve, or a union of curves. Is it possible for
this graph not to have any smooth portion, not even a teeny-tiny one?

You’ve seen many curves that were not entirely smooth, like the graph of y = |x|,
but the curves you’re accustomed to seeing are mostly smooth—there may be one or
several points at which they’re not smooth, but those points are joined by smooth
sub-curves. These curves are the piecewise smooth curves that you may have seen in
Calculus 3.

If you try to draw a curve (or, more generally, the graph of an equation F (x, y) =
0) that contains no smooth portions, you will not succeed. But the key word here is
draw. There are, indeed, curves that contain no smooth portions at all. An example
you may have seen is the infinitely jagged “snowflake curve”, which is defined as a
limit of certain piecewise-smooth curves, each of which is obtained from the preceding
one by making it more jagged in a certain way. The best representation you can draw
is an approximation of the limiting curve, obtained by stopping the iterative process
at some stage. You may have heard of fractals, of which the snowflake curve is one
example, but there are examples even more badly-behaved than fractals.

An equation F (x, y) = 0 can have a graph as bad as what we have just described,
even if F is continuously differentiable. The graph does not care whether you can
draw it. It is what it is. That’s why we need a criterion like (i) in Definition 2.55.

2.6.5 Exact equations

The next example is very general. It is key to understanding the differential equations
that are called exact.

Example 2.59 Suppose Mdx+Ndy is an exact differential on a region R (see Defi-
nition 2.39), and let F be a differentiable function on R for which Mdx+Ndy = dF .
Then (2.93) becomes

∂G

∂x
dx+

∂G

∂y
dy = 0. (2.104)

Suppose that C is a solution curve of (2.104), and that t 7→ (x(t), y(t)), t ∈ I, is a
continuously differentiable parametrization of C. Then (2.94) says
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∂G

∂x
(x(t), y(t))

dx

dt
+
∂G

∂y
(x(t), y(t))

dy

dt
= 0. (2.105)

By the Chain Rule, the left-hand side of (2.105) is just d
dt
F (x(t), y(t)). Thus, (2.94)

simplifies, in this case, to

d

dt
F (x(t), y(t)) = 0 for all t ∈ I. (2.106)

Since I is an interval, this implies that F (x(t), y(t)) is constant in t. Thus, for every
parametric solution (x(t), y(t)) of the equation dF = 0 on R, there is a (specific,
non-arbitrary) constant c0 such that

F (x(t), y(t)) = c0 (2.107)

for all t ∈ I. This implies that every solution curve of (2.104) in R is contained in
the graph of (2.107) for some value of the constant c0.

Now, fix a number c0, and consider the equation

F (x, y) = c0. (2.108)

Is this equation a solution of (2.104) in R, according to Definition 2.55? The answer
is yes, provided that criterion (i) of the definition is met. If this criterion is met, let
C be a smooth curve in R that is contained in the graph of (2.108). Let γ be such a
continuously differentiable parametrization of C, and write γ(t) = (x(t), y(t)), t ∈ I.
Since every point of C lies on the graph of (2.108), equation (2.107) is satisfied for all
t ∈ I. Differentiating both sides of (2.107) with respect to t, we find that equation
(2.106) is satisfied. But, by the Chain Rule, the left-hand side of (2.106) is exactly
the left-hand side of (2.105), so equation (2.105) is satisfied. Therefore C is a solution
curve of the differential equation (2.104). Hence criterion (ii) of Definition 2.55 is
met, so (2.108) is a solution of the DE (2.104) in R.

Example 2.60 Suppose we are given a differential-form equation

Mdx+Ndy = 0 (2.109)

that is exact on a region R, and we have found a function F such that Mdx+Ndy =
dF on R. Then Example 2.59 shows that the set of all solutions of (2.104) on R, in
implicit form, is the collection of equations

{F (x, y) = C} , (2.110)

where C is a “semi-arbitrary” constant: the allowed values of C are those for which
the graph of (2.110) contains a smooth curve in R.
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In view of this example, we make the following definition, stating ahead of time
that we are choosing the letter C to stand for an (unspecified) constant:

Definition 2.61 In the setting of Example 2.60, we call the set

{F (x, y) = C | C ∈ R}, also denoted simply {F (x, y) = constant} or {F (x, y) = C}
(2.111)

the general solution, in implicit form, of (2.109). In the notation (2.111), it is under-
stood that C is a constant and that the set of C’s for which the graph of “F (x, y) = C”
contains a smooth curve (and therefore for which “F (x, y) = C” is a solution of
(2.109)), the set of “allowed” C’s is some subset of the range of F that we are not
specifying explicitly. If we are able to specify this set explicitly, then we may substi-
tute the corresponding restrictions on C (e.g. “C > 0”) for “C ∈ R” in (2.111).

For any C, the graph of F (x, y) = C is called a level set of F . A level set can
contain a smooth curve without being a smooth curve. One familiar example is the
graph of xy = 0, which consists of two crossed lines. But in this example, every point
of the level-set lies on at least one smooth curve (either the x-axis or the y-axis)
contained in the level-set. The next example shows that this is not always the case.

Example 2.62 (Level-set with a corner) Let F (x, y) = y3 − |x|3. This func-
tion has continuous second partial derivatives on the whole plane R2 (for example

∂G
∂x

(x, y) =

{
−3x2, x ≥ 0

3x2, x ≤ 0
, so ∂2G

∂x2
(x, y) =

{
−6x, x ≥ 0

6x, x ≤ 0
). It has one critical

point, the origin. The level-set containing this critical point is the graph of

y3 − |x|3 = 0, (2.112)

which is simply the graph of y = |x|. The portion of this graph in the open first
quadrant (y = x, x > 0) is a smooth curve contained in this level-set, and so is the
portion of this graph in the open second quadrant. But the origin is a point of this
level-set that is not contained in any smooth curve in the level-set.

Equation (2.112) is a solution of

y2dy +

{
−3x2, x ≥ 0

3x2, x ≤ 0

}
dx = 0; (2.113)

it meets both criteria in Definition 2.55. However, the graph of (2.112) contains a
point, (0, 0), that is not on any solution curve of (2.113) (see Definitions 2.49 and
2.47). Thus, in general, the graph of a solution “F (x, y) = C” of dF = 0 can include
points that do not lie on any solution curve of dF = 0.
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Note that the “corner” of the level set F (x, y) = 0 in Example 2.62 was a critical
point of F (hence a singular point of the differential dF ). In the absence of singular
points, we can be much more concrete about the implicit-form general solution of an
exact equation:

If a differential Mdx+Ndy is exact on a region R and has no
singular points in R, then the set of C’s allowed in (2.110) is
simply the range of F on the region C, and every point in R
is contained in a unique solution curve that is maximal in R.

 (2.114)

To see why this is true, the interested student may read Example 3.1 in the
optional-reading Section 3.2.

2.7 Algebraic equivalence of DEs in differential form

Algebraic equivalence (see Definition 2.43) has the same importance for DEs in dif-
ferential form that it has for DEs in derivative form. Suppose that two equations
M1dx+N1dy = 0 and M2dx+N2dy = 0 are algebraically equivalent on a region R .
Then there is a function f on R, nonzero at every point of R, such that M2 = fM1

and N2 = fN1. If C is a solution curve of M1dx + N1dy = 0 and t 7→ (x(t), y(t)),
t ∈ I, is a continuously differentiable, non-stop parametrization of C, then

M2(x(t), y(t))
dx

dt
+N2(x(t), y(t))

dy

dt

= f(x(t), y(t))

(
M1(x(t), y(t))

dx

dt
+N1(x(t), y(t))

dy

dt

)
= f(x(t), y(t))× 0

= 0.

Thus C is a solution curve of M2dx + N2dy = 0, and t 7→ (x(t), y(t)) is a parametric
solution of this DE. Hence every solution curve of M1dx + N1dy = 0 is a solution
curve of M2dx+N2dy = 0, and the same goes for parametric solutions.

Similarly, since f is nowhere zero on R, we have M1 = 1
f
M2 and N1 = 1

f
N2.

The same argument as above, with the subscripts “1” and “2” interchanged and
with f replaced by 1

f
, shows that every solution curve or parametric solution of

M2dx + N2dy = 0 is a solution curve or parametric solution of M1dx + N1dy = 0.
Adding Definition 2.55 to this analysis, we have the following:

If two differential-form DEs are algebraically equivalent on a region R,
then in R they have exactly the same solution curves, exactly the same
parametric solutions, and exactly the same solutions.


(2.115)
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Observe that if M2 = fM1 and N2 = fN1, but f is allowed to be zero somewhere
on R, then every solution curve (or parametric solution) of M1dx + N1dy = 0 is a
solution curve (or parametric solution) of M2dx + N2dy = 0, but the reverse may
not be true. (A similar statement holds for equations in derivative form.) Thus,
just as for derivative form, when we algebraically manipulate differential-form DEs,
if we multiply or divide by functions that can be zero somewhere, we can gain or
lose solutions, and therefore wind up with a set of solutions that is not the set of all
solutions of the DE we started with.

The next example (in which the DE is not exact), is included to illustrate an
interesting phenomenon. The student should be able to follow the author’s steps, but
is not expected to understand how the author knew to take these steps.

Example 2.63 Consider the DE

2xy dx+ (y2 − x2)dy = 0. (2.116)

This DE is not exact on any region in the xy plane. However, the functions M(x, y) =
2xy and N(x, y) = y2 − x2 are continuously differentiable on the whole plane, and
the only point at which they are both zero is (0, 0). So, as with (2.102), we have
a differential with one singular point, which happens to be the origin52. Letting
R = {R2 minus the origin}, Theorem 2.53 guarantees us that through each point
(x0, y0) 6= (0, 0), there exists a unique solution curve of (2.116).

Observe that the positive x-axis is a solution-curve: if we set x(t) = t, y(t) =
0, t ∈ (0,∞), then the image of this parametrized curve is the positive x-axis, and for
all t ∈ (0,∞) we have

2x(t)y(t)
dx

dt
+ (y(t)2 − x(t)2)

dy

dt
= 2t× 0× 1 + (−t2)× 0 = 0.

Similarly, the negative x-axis is a solution-curve. The uniqueness statement in The-
orem 2.53 guarantees us that the positive and negative x-axes are the only solution
curves containing a point on either of these open half-axes. Therefore no other so-
lution curve in R contains a point (x, y) for which y = 0; every other solution curve
in R lies either entirely in the region R+ = {(x, y) | y > 0} (the half-plane above
the x-axis), or entirely in the region R− = {(x, y) | y < 0} (the half-plane below the
x-axis).

On R+, and also on R−, equation (2.116) is algebraically equivalent to

1

y2

(
2xy dx+ (y2 − x2)dy

)
= 0. (2.117)

But as the student may verify,

52In general, singular points can occur anywhere in the xy plane. The origin is used in most
examples in these notes just to simplify the algebra, so that the student may focus more easily on
the concepts.
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1

y2

(
2xy dx+ (y2 − x2)dy

)
= 2

x

y
dx+ (1− x2

y2
)dy

= d

(
x2

y
+ y

)
= d

(
x2 + y2

y

)
.

So on R+, and also on R−, the left-hand side of (2.117) is exact; it is dF , where

F (x, y) = x2+y2

y
. Hence the general solution of (2.117), in either of these regions, is{

x2 + y2

y
= C

}
. (2.118)

where, from fact (2.114), the set of allowed values of C is the range of F on each

region. Since the sign of x2+y2

y
is the same as the sign of y, this means that on R+,

only positive C’s will be allowed, and on R−, only negative C’s will be allowed. To
see that these are the only restrictions on C, just observe that from the definition of
of F , we have F (0, C) = C.

Now for some algebraic rearrangement. Let us write C = 2b in (2.118). Then
b is a semi-arbitrary constant with b > 0 for solution curves in R+, and b < 0 for
solution curves in R−. On each of these two regions,

x2 + y2

y
= 2b

⇐⇒ x2 + y2 = 2by,

⇐⇒ x2 + y2 − 2by = 0,

⇐⇒ x2 + y2 − 2by + b2 = b2,

⇐⇒ x2 + (y − b)2 = b2. (2.119)

The graph of (2.119) in R2 is a circle of radius |b| centered at (0, b) on the y-axis;
the graph in R is the circle with the origin deleted. Thus, these circles-with-origin-
deleted are the maximal solution curves of (2.117) on R+ and on R−. But since
(2.117) is algebraically equivalent to (2.116) on these regions, the same curves are all
the solution curves of (2.116) in these regions.

We have now found all the solution curves of (2.116) in R that do not intersect
the x-axis, as well as all those that do intersect it. So we have all the solution curves
in R = {R2 minus the origin}. If we now re-include the origin, we see that the origin
lies on every one of the circles (2.119), as well as on the x-axis. With the origin
re-included, it is easy to see that the full x-axis is a solution curve of (2.116). We
leave the student to check that each full circle (2.119), with the origin included, is
also a solution curve of (2.116).
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Figure 4: Some solution curves of 2xy dx+ (y2−x2)dy = 0. (The graphing utility used to render

this diagram does not do a good job near the origin; there should be no gap in any of the circles.)

Thus, among the solution curves of (2.116) are all circles centered on the y axis,
plus one “exceptional” curve, the x-axis. We can write the set of all implicit solutions
corresponding to this set of solution curves as

{x2 + (y − b)2 = b2 | b 6= 0} and {y = 0}. (2.120)

An alternative way of expressing this set of solutions is as follows. In (2.118), C
can be any nonzero constant, so we may write C as 1

K
, where the allowed values of

K are also anything other than zero. We can then rewrite (2.118) as y = K(x2 + y2).
The solution curves that lie in R+ have K > 0; those that lie in R+ have K < 0.
These give all the solutions in the “b-family”, just expressed in different-looking but
algebraically equivalent way. But magically, if we now allow K = 0, we get the lonely
y = 0 solution as well. So we can also write the set (2.120) in a unified way as{

y = C(x2 + y2) | C ∈ R
}
. (2.121)

(We have renamed K back to C just to emphasize that the letter chosen an arbitrary
or “semi-arbitrary” constant does not matter, as long as it is clear that this is what
the letter represents.)

From the foregoing analysis, it may appear that the set of all solution curves of
(2.116) on R2 consists of all circles centered on the y axis, plus one “exceptional”
curve, the x-axis. Similarly, it may appear that the set of all implicit solutions of
(2.116) is (2.120), or equivalently (2.121).

But both of these conclusions are wrong! To see why, in Figure 4 start at a
point P other than the origin. This point lies on a unique circle in the figure. Move
along this circle in either direction till you reach the origin. When you reach the
origin continue moving, but go out along a different circle, either on the same side
of the y-axis as the first circle or on the opposite side, whatever you feel like. Stop
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at a point Q before you reach the origin again. Erase the endpoints P and Q (see
the second paragraph after Definition 2.47), and you have a perfectly good, smooth,
solution curve that is not contained in any circle or in the x-axis.

You can let the x-axis into this game as well. For example, start on the positive
x-axis, move left till you reach the origin, and then move out along one of the circles.

Thus there are solution curves of (2.117) that are not contained in any of the
“circles plus one straight line” family given by (2.120) or (2.121).

In Example 2.63, all the solution curves in R2 intersected at the origin (a singular
point ofMdx+Ndy), but all had the same slope there (zero). Next we give an example
of a very simple equation of the form Mdx+Ndy = 0 in which all the solution curves
in R2 intersect at a singular point of Mdx + Ndy, but with all different slopes—in
fact, with every possible slope.

Example 2.64 Consider the DE

xdy − ydx = 0. (2.122)

The student may check that every straight line through the origin—whether horizon-
tal, vertical, or oblique—is a solution curve.

The only singular point of xdy − ydx is the origin. Therefore in R = {R2 minus
the origin}, there is a unique solution curve through every point. If we take the
straight lines through the origin, and delete the origin, we get the collection of open
rays emanating from the origin. Every point of R lies on one and only one such ray.
Therefore these are all the solution curves of (2.122) in {R2 minus the origin}. It
follows that there are no solution curves of (2.122) in R2 other than what we get
by re-including the origin. Thus the set of solution curves in R2 is the family of all
straight lines through the origin.

2.8 Relation between differential form and derivative form

Definition 2.65 Let M,N be functions on a region R in R2. Consider the equations

M(x, y)dx+N(x, y)dy = 0, (2.123)

M(x, y) +N(x, y)
dy

dx
= 0, (2.124)

M(x, y)
dx

dy
+N(x, y) = 0. (2.125)

We call equations (2.124) and (2.125) the derivative-form DEs associated with the
differential-form DE (2.123). Similarly, we call equation (2.123) the differential-form
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DE associated with the derivative-form DE (2.124), and also the differential-form DE
associated with the derivative-form DE (2.125).

More generally, if a derivative-form equation is algebraically equivalent to (2.124)
or (2.125) on a region R, we call the equation a derivative form of (2.123) on R.
Similarly, if a differential-form equation is algebraically equivalent to (2.123) on a
region R, we call the equation a differential form of (2.124) and (2.125) on R.53

It is easy to remember how to associate a differential-form DE to a derivative-form
DE, and vice-versa: Pretend that dy

dx
and dx

dy
are actual fractions with the numerators

and denominators that the notation suggests, and formally “divide” equation (2.123)
by dx or dy to obtain the associated equation (2.124) or (2.125), or formally “multiply”
equation (2.124) or (2.125) by dx or dy to obtain the associated equation (2.123). This
is an extremely useful memory-device, and the student should not hesitate to use it,
but mathematically it is garbage.54 The Leibniz notation “ dy

dx
” for derivatives has

many extraordinarily useful features, but the student must remember that it is only
notation, in which neither dy nor dx is a real number, and which does not represent
a fraction with numerator dy and denominator dx.

In this section of the notes we will see how and why equations (2.123)–(2.125)
actually are related to each other.

To start, suppose that C is smooth curve, and γ a continuously differentiable,
non-stop parametrization of C, with domain-interval I. Write γ(t) = (f(t), g(t)) (for
what we are about to do, writing “γ(t) = (x(t), y(t))” would lead to confusion). Let’s
call a subinterval I1 of I “x-monotone” if f ′(t) is nowhere 0 on I1, and “y-monotone”
if g′(t) is nowhere 0 on I1.55 (These are not mutually exclusive: if both f ′(t) and g′(t)
are nowhere zero on I1, then I1 is both x-monotone and y-monotone. For example,
if we parametrize a circle by γ(t) = (cos t, sin t), then the interval (0, π/2), in which
γ traces out the quarter-circle in the open first quadrant, is both x-monotone and
y-monotone. The interval (0, π), in which γ traces out the half-circle lying above the
x-axis, is x-monotone but not y-monotone.)

Since γ is a non-stop parametrization, for every t0 ∈ I at least one of the two

53The last paragraph of this definition is more restrictive than any analogous statement in text-
books from which I’ve taught in the past, all of which omit the (important!) requirement of algebraic
equivalence. Except in the context of separable equations, current textbooks tend to omit any men-
tion whatsoever of the logical relation between a given DE, and the DE obtained from the given
one by multiplying it through by a function. Current textbooks allow (and, by setting an example,
implicitly encourage) multiplication/division by functions that are zero somewhere. But this can
lead to losing one or more solutions of the original DE, or gaining one or more spurious “solutions”—
functions (or curves) that are not solutions (or solution curves) of the original DE.

54Unfortunately, most DE textbooks do not mention that this way of viewing the relations among
(2.123), (2.124), and (2.125) is mathematical nonsense, and simply encourage the formal multiplica-
tion/division without giving any explanation whatsoever of why the derivative-form and differential-
form equations are related to each other.

55This is very temporary terminology, invented only for this part of these notes.
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numbers f ′(t0), g′(t0) is nonzero. If f ′(t0) 6= 0, then since f ′ is assumed to be contin-
uous, there is some open interval containing t0 on which f ′(t) is nonzero and has the
same sign as f ′(t0). A similar statement holds if g′(t0) 6= 0. Thus, every t ∈ I lies in
a subinterval I1 that is either x-monotone or y-monotone.

Let I1 be an x-monotone interval. Then f ′(t) not zero for any t ∈ I1. The Inverse
Function Theorem that you may have learned in Calculus 1 assures us that there is
an inverse function f−1, with domain an interval I2 and with range I1, and that f−1 is
continuously differentiable56. Let C1 be the smooth curve parametrized by (f(t), g(t))
using just the x-monotone open interval I1 rather than the whole original interval I.
On this domain, “x = f(t)” is equivalent to “t = f−1(x)”. So, temporarily writing
tnew = x, for (x, y) = (f(t), g(t)) ∈ C1 we have

x = tnew,

y = g(t) = g(f−1(x)) = g(f−1(tnew))

= φ(tnew)

where tnew ∈ I2 and φ = g ◦ f−1. Since g and f−1 are continuously differentiable, so
is h. Furthermore, dx/dtnew ≡ 1 6= 0. Therefore the equations above give us a new
continuously differentiable, non-stop parametrization γnew of C1:

γnew(tnew) = (tnew, φ(tnew)). (2.126)

The variable in (2.126) is a “dummy variable”; we can give it any name we like. Since
the x-component of γnew(tnew) is simply the parameter tnew itself, we will simply use
the letter x for the parameter; thus

γnew(x) = (x, φ(x)). (2.127)

Thus, this parametrization uses x itself as the parameter, treats x as an independent
variable, and treats y as a dependent variable related to x by y = φ(x).

Now suppose that our original curve C is a solution curve of a given differential-
form DE

M(x, y)dx+N(x, y)dy = 0. (2.128)

56This important theorem used to be stated, though usually not proved, in Calculus 1. Unfor-
tunately, it seems to have disappeared from many Calculus 1 syllabi. The theorem says that if f
is a differentiable function on an interval J , and f ′(t) is not 0 for any f ∈ J , then (i) the range
of f is an interval K, (ii) an inverse function f−1 exists, with domain K and range J , and (iii)
f−1 is differentiable, with its derivative given by (f−1)′(x) = 1/f ′(f−1(x)). (If we write x = f(t)
and t = f−1(x), then the formidable-looking formula for the derivative of f−1 may be written in
the more easily remembered, if somewhat less precise, form dt

dx = 1
dx/dt .) If the derivative of h is

continuous, so is the derivative of h−1.
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Then C1, a subset of C, is also a solution curve, so every continuously differentiable,
non-stop parametrization (x(t), y(t)) of C1 satisfies

M(x(t), y(t))
dx

dt
+N(x(t), y(t))

dy

dt
= 0 (2.129)

In particular this is true for the parametrization (2.127), in which the parameter t is
x itself, and in which have y(t) = φ(t) = φ(x) = y(x). Therefore, for all x ∈ I2,

0 = M(x, φ(x))
dx

dx
+N(x, φ(x)) φ′(x)

= M(x, φ(x)) +N(x, φ(x)) φ′(x). (2.130)

The right-hand side of (2.130) is exactly what we get if we substitute “y = φ(x)” into
M(x, y) +N(x, y) dy

dx
. Hence φ is a solution of

M(x, y) +N(x, y)
dy

dx
= 0. (2.131)

Therefore the portion C1 of C is the graph of a solution (namely φ) of the
derivative-form differential equation (2.131). The argument above also gives us the
following an important fact to which we will want to refer later:

If a solution curve of the differential-form equation
Mdx+Ndy = 0 can be parametrized by γ(x) = (x, φ(x)),
where φ is a differentiable function, then φ is a solution

of the associated derivative-form equation M +N dy
dx

= 0.

 (2.132)

Similarly, if C2 is a portion of C obtained by restricting the original parametri-
zation γ to a y-monotone interval I2, then C2 is the graph of a differentiable function
x(y)—more precisely, the graph of the equation x = φ(y) for some differentiable
function φ—that is a solution of the derivative-form differential equation

M(x, y)
dx

dy
+N(x, y) = 0. (2.133)

Therefore:

Every solution curve of the differential-form equation (2.123)
is a union of solution curves of the derivative-form
equations (2.124) and (2.125).

 (2.134)

Note that the graphs mentioned in (2.134) will overlap, in general, since the x-
monotone intervals and y-monotone intervals of a continuously differentiable, non-stop
parametrization γ will usually overlap. (The only way there will not be an overlap
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is if f ′(t) ≡ 0 or g′(t) ≡ 0, in which case C is a vertical or horizontal straight line,
respectively, and there are, respectively, no x-monotone or y-monotone subintervals.)

Now compare (2.131) with the general first-order derivative-form DE with inde-
pendent variable x and dependent variable y,

G(x, y,
dy

dx
) = 0. (2.135)

Equation (2.131) is a special case of (2.135), in which the dependence of G on its third
variable is very simple. If we use a third letter z for the third variable of G, then
(2.131) corresponds to taking G(x, y, z) = M(x, y) + N(x, y)z, a function that can
depend in any conceivable way on x and y, but is linear separately in z. In general,
(2.135) could be a much more complicated equation, such as(

dy

dx

)3

+ (x+ y) sin(
dy

dx
) + xey = 0. (2.136)

Solving equations such as the one above is much harder than is solving equations
of the simpler form (2.131). For certain functions G that are more complicated than
(2.131), but much less complicated than (2.136), methods of solution are known57.
But the general theory and techniques for working with equation (2.135) for general
G’s are much less highly developed than they are for equations in the standard form
(2.138) or in the form (2.131).

One of the features of (2.131) that makes it so special is that on any region on
which N(x, y) 6= 0, (2.131) is algebraically equivalent to

dy

dx
= −M(x, y)

N(x, y)
, (2.137)

which is of form

dy

dx
= f(x, y). (2.138)

Recall that equation (2.138) is exactly the “standard form” equation that appears in
the fundamental Existence and Uniqueness Theorem for initial-value problems. This
theorem is absolutely crucial in enabling us to determine whether our techniques of
finding solutions actually give us all solutions.

If you re-read these notes, you will see that all the general facts about DEs in
derivative form—such as the definition of “solution” and “implicit solution”, and the
fact that algebraically equivalent DEs have the same set of solutions—were stated

57One such type equation is a Clairaut equation y = x dy
dx + g( dy

dx ), which is equivalent to (2.135)
with G(x, y, z) = xz + g(z)− y. Students using the textbook Nagle, Saff, and Snider, Fundamentals
of Differential Equations, 8th ed., Pearson Addison-Wesley, 2012 can learn about these equations
by doing Group Project 2F.
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for the general first-order DE (2.135). These facts apply just as well to nasty DEs
like (2.136) as they do to (relatively) nice ones like (2.138). However, in all of our
examples, we used equations that were algebraically equivalent to (2.124) (hence also
to (2.138)) on some region. The reason is that although the concept of “the set of
all solutions” makes perfectly good sense for the general equation (2.135), the author
wanted to use examples in which he could show the student easily that the set of all
solutions had actually been found.

Nowadays, students in an introductory DE course rarely see any first-order
derivative-form equations that are not algebraically equivalent, on some region, to
a DE in the standard form (2.138). Because of this, it is easy to overlook a significant
fact: the only derivative-form DEs that are related to differential-form DEs
are those that are algebraically equivalent to (2.138) on some region. The
two types of equations, in full generality, are not merely two sides of the same coin.

However, for derivative-form DEs that can be “put into standard form”—which
are exactly those that are algebraically equivalent to a DE of the form (2.124) on
some region—there is a very close relation between the two types of DEs. We are
able to relate many, and sometimes all, solutions of a DE of one type to solutions of
the associated DEs of the other type. Statement (2.134) gives one such relation.

To have a name for equations that are explicitly of the form (2.124) or (2.125),
let us say that a derivative-form equation, with independent variable x and dependent
variable y, is in “almost-standard form”58 if it is in the form (2.124), or can be put
in that form just by subtracting the right-hand side from the left-hand side. If you
re-inspect the argument leading to the conclusion (2.134), you will see that it also
shows that every solution curve of (2.124) or (2.125) is a solution curve of (2.123).
Thus:

Every solution curve of a derivative-form
equation in almost-standard form is a solution
curve of the associated differential-form equation.

 (2.139)

Combining (2.134) and (2.139), we conclude the following:

A smooth curve C is a solution curve of an equation
in differential form if and only if C is a union of
solution curves of the associated derivative-form
equations.

 (2.140)

We emphasize that in deriving these relations, the transition from the differential-
form DE (2.128) to the derivative-form DEs (2.131) and (2.133) was NOT obtained

58This is another bit of terminology invented only for these notes, just to have a name to distinguish
(2.124) from (2.137) on regions in which N(x, y) may be zero somewhere.
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by the nonsensical process of “dividing by dx” or “dividing by dy”, even though the
notation makes it look that way. The transition was achieved by understanding that
what we are looking for when we solve (2.123) are curves whose parametrizations
satisfy (2.129), and that for particular choices of the parameter on the intervals that
we called “x-monotone” or “y-monotone”, (2.129) reduces to (2.124) or (2.125).

Similarly, transitions from derivative form to differential form are NOT achieved
by the nonsensical process of “multiplying by dx” or “multiplying by dy”. The benefit
of the Leibniz notation “ dy

dx
” for derivatives is that it can be used to help remember

many true statements by pretending, momentarily, that you can multiply or divide
by a differential just as if it were a real number59. In particular, we can use this
principle help us easily remember that the differential-form equation (2.123) is related
to (but not the same as!) the derivative-form equations (2.124) and (2.125). But this
notational trick doesn’t tell us everything, such as the precise relationship among
these equations, which is statement (2.139) (of which statement (2.134) is the “only
if” half).

2.9 Using differential-form equations to help solve derivative-
form equations

The standard procedure taught in DE courses for using differential-form equations to
help solve derivative-form equations is essentially the following:

Step 1. Write down a differential-form equation associated with the derivative-form DE.

Step 2. If this differential-form DE is exact, go to Step 3. Otherwise, attempt by al-
gebraic manipulation to “turn the equation into” an exact DE or a separated
DE, the latter meaning one of the form h(y)dy = g(x)dx. If you succeed, go on
to Step 3. (If you do not succeed, then differential-form equations will not help
you solve the original derivative-form equation.)

Step 3. If the new DE is exact, solve it by the “exact equations” method. If the new
DE is separated, solve it by integrating both sides.

Step 4. Write down your final answer in the form “{F (x, y) = C}” (or, for separable
equations, “{H(y) = G(x) + C}”), and hope that this is the general solution,
in implicit form, of the original derivative-form DE.

Step 5. If the equations in your final answer can be solved explicitly for y in terms of
x, then (usually) you should do so. Otherwise, stop after Step 4.

59Simultaneously, the drawback of the Leibniz notation is that it promotes some incorrect or lazy
thought-patterns. It encourages the manipulation of symbols without the understanding of what
the symbols means. It may lead the student to think something is “obviously true” when it isn’t
obvious, and often when it isn’t true.
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No doubt you noticed the phrase “and hope that this is the general solution, in
implicit form, of the original derivative-form DE.” All we did above is write down
a sequence of steps, pushing symbols around a page. Our outline of this general
procedure did not involve asking whether every solution of the equation we started
yielded a solution-curve of the diffferential-form equation written in Step 1, or vice-
versa; whether DE written in Step 2 had the same set of solution curves as the DE
written in Step 1. So, why should we expect our final answer we’ve given to be the
general solution (in implicit form) of the original derivative-form DE we were asked
to solve?

Before discussing how to turn the “autopilot” procedure outlined above into a
more reliable one, let us look an example that illustrates one of the problems with
the procedure as outlined.

Example 2.66 Solve the differential equation

(10xy9 + 2xy)
dy

dx
= −(3x2 + 1 + y10 + y2). (2.141)

(As always, the instruction “solve the DE” means “find all the [maximal] solutions”,
i.e. the general solution.)

This DE is neither separable or linear. The standard method of attack is to look
at the associated differential-form DE, of the form “differential=0”, and hope that it
is exact. In this case, the associated differential-form DE is60

(3x2 + 1 + y10 + y2)dx+ (10xy9 + 2xy)dy = 0. (2.142)

The coefficients M(x, y) of dx and N(x, y) of dy are continuously differentiable on
the whole xy plane, and we see that our differential Mdx+Ndy passes the exactness
test “My = Nx”, so we know that there is some F , continuously differentiably on all
of R2, for which the left-hand side of (2.142) is dF . Using our usual method, we find
that an F with this property is

F (x, y) = x3 + x+ xy10 + xy2. (2.143)

From Example 2.60, we know that the general solution of (2.142) is

{x3 + x+ xy10 + xy2 = C}, (2.144)

where C is (at worst) a semi-arbitrary constant. Fact (2.114) shows that the set
of allowed values of C is simply the range of F , provided that Mdx + Ndy has no

60More precisely, in this sentence and the last, we should have said “one of the two” associated
differential-form DEs. One of these is obtained by first subtracting the right-hand side of (2.141)
from the left-hand side; the other is obtained by first subtracting the leftt-hand side of (2.141) from
the right-hand side. Each of these equations is just the other with both sides multiplied by −1.
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singular points. Looking at M(x, y), we observe that x2, y10, and y2 are all ≥ 0, so
M(x, y) ≥ 1. Therefore M(x, y) is nowhere zero, so Mdx + Ndy has no singular
points. So fact (2.114) applies, and the set of allowed values of C is simply the range
of F . We can easily see that this range is the entire real line (−∞,∞). (Just set
y = 0 in (2.143) and observe that limx→∞ F (x, 0) =∞ and limx→−∞ F (x, 0) = −∞.)

Therefore the general solution of (2.142), in implicit form, is the family of equa-
tions (2.144), with C a completely arbitrary constant; all real values are allowed.

But the equation we wanted to solve was (2.141), not (2.142), so we ask: is this
same family of equations the set of all solutions of (2.141), in implicit form? The
answer is no.

To see why, note that for (2.144) to be the set of all solutions of (2.141), in implicit
form, two criteria must be satisfied: (i) every solution of (2.141) must be implicitly
defined by one of the equations in the collection (2.144), and (ii) the collection of
equations (2.144) cannot contain any “spurious implicit solutions”—equations that
are not implicit solutions of (2.141). Fact (2.139) assures us that criterion (i) is met,
so we need worry only about (ii).

Let’s look at the C = 0 case of (2.144):

x3 + x+ xy10 + xy2 = 0. (2.145)

(Don’t worry about “why this choice of C?” The author contrived this example so
that C = 0 would be useful to look at; he is using information that the student
doesn’t have.) Observe that this equation can be rewritten as

x(x2 + 1 + y10 + y2) = 0. (2.146)

The quantity inside parentheses is strictly positive, so (2.146) is equivalent to just
x = 0. The graph of (2.146) is simply the y-axis, a perfectly nice smooth curve, and
a perfectly good solution curve of (2.142), but it does not contain the graph of any
function of x on any open interval. Therefore it does not contain the graph of any
solution of (2.141). Therefore (2.146) is not an implicit solution of (2.141).

So our set of all solutions of (2.142) is not simply an implicit form of the general
solution (2.141); it has at least one equation, namely (2.145), that doesn’t belong in
the latter. This demonstrates the main point of this example:

The general solution of an almost-standard-form derivative-
form DE is not always the same as the general solution of the
associated differential-form DE.


(2.147)

To complete the current example, we would need to answer this question: Are
there any values of C other than 0 for which x3 + x + xy10 + xy2 = C is not an
implicit solution of (2.141)? The answer is no. (This can be shown using the Implicit
Function Theorem, but in the interests of brevity, and since demonstrating (2.147)
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was the main point of the current example, we will omit the argument.) Thus the
general solution of (2.141), in implicit form, is{

x3 + x+ xy10 + xy2 = C, C 6= 0
}
. (2.148)

What Example 2.66 shows is that if you try to solve a differential equation by
mindlessly pushing differentials around the page as if they were numbers, the answer
you wind up with may not be the set of solutions to the equation you were trying
to solve. In fact, when you realize how dissimilar differentials and numbers are, it
should initially strike you as miraculous that you can even get close to the correct
set of solutions by such manipulations. One of the chief purposes of these notes is
to explain this miracle, but another is to get the student to appreciate that there is
something to explain. Writing a derivative using fraction-notation doesn’t make it a
true fraction, any more than calling a hippopotamus a lollipop makes it a lollipop.
Treating “ dy

dx
” as if it were a fraction is an abuse of notation, and conclusions we reach

from treating it like a fraction need to be justified some other way.
Despite this warning, statement (2.147) should not discourage the student

from using an associated differential-form DE to help solve a derivative-
form DE. In fact, to become good at solving first-order DEs, it is essential that you
develop facility in passing back and forth between the two types of equations. The
“autopilot” procedure is not worthless; it’s simply not perfect. The behavior seen
in Example 2.66 is rather exceptional. For “most” continuously differentiable
functions M and N (“most” in a sense that cannot be made precise at the level of
these notes), if a collection E of equations is an implicit form of the general
solution of a DE M(x, y)dx+N(x, y)dy = 0, the same collection E will also be
an implicit form of the general solution of the associated derivative-form
DE M(x, y) +N(x, y) dy

dx
= 0. In “most” of the exceptions to this rule, we need only

delete one or a few of the equations from E to obtain the general solution of the
derivative-form DE (in implicit form).

The simplest of these exceptions are equations that are explicitly of the form
“x = some specific constant”, or are equivalent to an equation of this form, such
as equation (2.146). It is obvious that equations written this way are not implicit
solutions of a derivative-form DE with x as independent variable, but when a whole
family of equations is given, such as x3 + x + xy10 + xy2 = C (equation (2.144)), it
may take some work and cleverness to determine whether there are members of this
family that are equivalent to “x = specific constant”.

The next example involves simpler equations than Example 2.66, but a more
complicated “spurious solution”.

Example 2.67 Consider the differential-form DE
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(y2 + 1) cosx dx+ 2y sinx dy = 0 (2.149)

and the associated derivative-form DE

(y2 + 1) cosx+ 2y sinx
dy

dx
= 0. (2.150)

Equation (2.149) is exact. Its general solution, in implicit form, is

(y2 + 1) sinx = C (2.151)

where C is an arbitrary constant. For C 6= 0, every point (x, y) in the graph of (2.151)
has sinx 6= 0, hence y2 + 1 = C

sinx
. As the student may check, the latter equation is

an implicit solution of (2.150); the general solution of (2.150), in implicit form, is

(y2 + 1) sinx = C, C 6= 0. (2.152)

However, for C = 0, equation (2.151) is equivalent to sinx = 0, whose graph
in R2 is the infinite collection of vertical lines of the form x = nπ, where n is an
integer. None of these vertical lines is the graph (or contains the graph) of a solution
of (2.150).

So in this example, we again need to throw away only one equation from the given
implicit form (2.151) of the general solution of the differential-form DE in order to
get an implicit form of the general solution of the associated derivative-form DE, but
the graph of the discarded equation consists of infinitely many inextendible solution
curves of the differential-form DE.

If a collection E of equations is an implicit form of the general solution of a DE
M(x, y)dx+N(x, y)dy = 0, then fact (2.139) guarantees that the collection E contains
all the solutions of the associated derivative-form DE M(x, y) + N(x, y) dy

dx
= 0, in

implicit form. If we are trying to obtain the general solution of M(x, y)+N(x, y) dy
dx

=
0 from having solved M(x, y)dx + N(x, y)dy = 0, we need only worry whether E
contains any equations that are not implicit solutions of the derivative-form equation
with x as independent variable.

In general, an algebraic equation (say F (x, y) = 0) is an implicit solution of the
differential-form DE M(x, y)dx + N(x, y)dy = 0 but not the associated derivative-
form DE M(x, y) +N(x, y) dy

dx
= 0 if and only if the graph G of F (x, y) = 0 has both

of the following properties:

• G contains at least one vertical line segment, and

• the only smooth curves that G contains are vertical lines or line segments.
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Figure 5:

If we have a collection E of equations that is an implicit form of the general
solution of the differential-form DE, and we remove from this collection all equations
whose graphs have the two properties above, then the remaining collection of equa-
tions is an implicit form of the general solution of the associated derivative-form DE.
“Most of the time”, there will be no such equations in our original collection E , in
which case the same collection E serves as an implicit form of both the solution of
the differential-form DE and the associated derivative-form DE.

It should be noted that even when an algebraic equation, say F (x, y) = 0, is an
implicit solution of both M(x, y)dx + N(x, y)dy = 0 and M(x, y) + N(x, y) dy

dx
= 0,

its graph may contain smooth curves that have vertical segments, and therefore are
not solution curves of the derivative-form DE. For example, there is an infinitely
differentiable function F (whose formula we will not write down) whose graph is
the oval in Figure 5. The entire oval is a solution curve of ∂F

∂x
dx + ∂F

∂y
dy = 0, but

the vertical line segments in the oval are not contained in graphs of any solutions
of ∂F

∂x
+ ∂F

∂y
dy
dx

= 0. The equation F (x, y) = 0 is still an implicit solution of the

derivative-form DE because (i) the graph of F (x, y) = 0 contains curves that are
graphs of differentiable functions of x (the semicircles at the top and bottom of
the oval, with the endpoints of the semicircles deleted), and (ii) all such curves are
solutions of the derivative-form DE.

The previous examples in this section focused on problems caused by passing
mindlessly between derivative-form and differential-form DEs (Step 1 of the autopilot
procedure outlined earlier). The other source of problems in the autopilot procedure
is that when carrying out the procedure, we often perform some algebraic manipu-
lations. Sometimes we do these manipulations on the derivative-form DE, prior to
writing down an associated differential-form DE; sometimes we do the manipulations
on the differential-form DE; and sometimes we do both. The allowed algebraic manip-
ulations of the derivative-form DE are addition/subtraction of a function and multipli-
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cation/division by a function; the allowed algebraic manipulations of the differential-
form DE are addition/subtraction of a differential and multiplication/division by a
function (however, once our differential-form DE is in the form Mdx + Ndy = 0,
adding/subtracting differentials will take it out of this form). Any time we perform
such a manipulation, we must check whether the new DE is algebraically equivalent to
the old one on the entire region of interest. If algebraic equivalence is not maintained,
then there is the potential of either losing solutions or introducing spurious ones.

Now let’s try to nail down how to modify the autopilot procedure into one that
neither loses solutions nor introduces spurious ones. Suppose we want to solve a
standard-form DE

dy

dx
= f(x, y) (2.153)

or, more generally, an “almost-standard form” DE

f1(x, y)
dy

dx
= f2(x, y) (2.154)

If (2.153) or (2.154) is separable or linear, we can use standard techniques for such
equations in order to find the general solution. (For separable equations, the only
modification needed for the autopilot procedure is to add to “{H(y) = G(x)+C}” any
constant solutions that the original DE had.) If our starting DE is not separable or
linear, we can look at the associated differential-form DE, which for the two equations
above would be

− f(x, y)dx+ dy = 0 (2.155)

and

− f2(x, y)dx+ f1(x, y)dy = 0. (2.156)

If we are extremely lucky, then (2.155) or (2.156) will be exact.
In the case of (2.155), this virtually never happens: we would need ∂f

∂y
≡ 0. If

we are working on a rectangular region R, this condition is equivalent to saying that
f is a function of x alone; i.e. f(x, y) = g(x) for some one-variable function g. But
then (2.153) was already of the form dy

dx
= g(x), solvable just by integrating g; there

is no need even to look at equation (2.155).
More commonly, however, our equation dy

dx
= f(x, y) or f1(x, y) dy

dx
= f2(x, y) may

be algebraically equivalent to a DE whose associated differential-form DE is exact,
perhaps just on some region R. (In a best-case scenario, algebraic equivalence and
exactness will hold on the whole plane R2. Usually, however, we will have to restrict
attention to a region R that is not all of R2 to maintain algebraic equivalence. We may
have to shrink the region further to achieve exactness.) For the sake of concreteness,
let us focus on the case in which our starting equation is the of the form dy

dx
= f(x, y);
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the principles for working with the more general f1(x, y) dy
dx

= f2(x, y) are essentially
identical.

The derivative-form equation dy
dx

= f(x, y) is algebraically equivalent on R to
an exact DE on R if and only if the differential-form equation −f(x, y)dx + dy is
algebraically equivalent on R to an exact DE on R. To make use of this fact, we
relate the equation dy

dx
= f(x, y) to a differential-form DE by a two-step process—one

step of which is algebraic manipulation of the DE (this may involve several sub-steps,
in each of which we keep track of the algebraic-equivalence issue), and the other of
which is the passage from a derivative-form DE to the associated differential-form
DE—hoping to arrive at an exact DE. The order in which we do these steps and sub-
steps does not matter. For example, if we start with the equation dy

dx
= 2y3 sinx cosx

3y2 cos2 x+1
,

we could go through the procedure

dy
dx

= 2y3 sinx cosx
3y2 cos2 x+1

↓ multiply by 3y2 cos2 x+ 1 (this yields an algebraically

equivalent DE on R2 since 3y2 cos2 x+ 1 is nowhere zero)

(3y2 cos2 x+ 1) dy
dx

= 2y3 sinx cosx

↓ subtract 2y3 sinx cosx (yielding an algebraically equivalent DE)

−2y3 sinx cosx+ (3y2 cos2 x+ 1) dy
dx

= 0

↓ write the associated differential-form DE

−2y3 sinx cosx dx+ (3y2 cos2 x+ 1)dy = 0,

or through the procedure
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dy
dx

= 2y3 sinx cosx
3y2 cos2 x+1

↓ subtract 2y3 sin x cos x
3y2 cos2 x+1

(yields an algebraically equivalent equation)

−2y3 sinx cosx
3y2 cos2 x+1

+ dy
dx

= 0,

↓ write the associated differential-form DE

−2y3 sinx cosx
3y2 cos2 x+1

dx+ dy = 0,

↓ multiply by 3y2 cos2 x+ 1

−2y3 sinx cosx dx+ (3y2 cos2 x+ 1)dy = 0.

Whichever procedure we use, we end up with the same differential-form DE. As
the student may check, this last DE is exact on R2, so we may find its general solution
by our standard exact-equation method. Depending on how we choose to integrate
sinx cosx, there are several different implicit forms in which we could choose to write
the general solution, one of which is{

y + y3 cos2 x = C
}

(2.157)

(Note: “obvious” manipulations such as clearing fractions, plus writing down the
associated differential-form DE, will not always lead to an exact DE. The author
contrived the current example so that the technique above would lead to an exact
equation, in order to illustrate further the relation between derivative and differential
form. Your textbook probably has similarly contrived examples and homework exer-
cises, in order to give you practice with the techniques you are learning.) But what
relation do the solutions of the equation −2y3 sinx cosx+ (3y2 cos2 x+ 1) dy

dx
= 0 bear

to the solutions of our original derivative-form DE?
Fact (2.139) guarantees us that any implicit form of the general solution of

−2y3 sinx cosx dx + (3y2 cos2 x + 1)dy = 0—in particular, the family of equations
(2.157)—contains a general solution, in implicit form, of the derivative-form equa-
tion −2y3 sinx cosx + (3y2 cos2 x + 1) dy

dx
= 0. This derivative-form equation is al-

gebraically equivalent to the DE we started with, dy
dx

= 2y3 sinx cosx
3y2 cos2 x+1

, hence has the

same solutions. Therefore (2.157) contains a general solution, in implicit form, of our
original derivative-form DE. The only question is whether the family (2.157) contains
“spurious solutions”—equations that are implicit solutions of −2y3 sinx cosx dx +
(3y2 cos2 x+ 1)dy = 0, but not of dy

dx
= 2y3 sinx cosx

3y2 cos2 x+1
(equivalently, not of −2y3 sinx cosx

3y2 cos2 x+1
+

dy
dx

= 0). We have seen that the graph G of a spurious solution must contain a ver-
tical line segment, i.e. a set of the form {(x0, y) | y ∈ J} where x0 is a constant

85



and J is some interval over which y may vary. But it is easily seen that none of the
equations (2.157) has such a graph61. Therefore (2.157) is the general solution of the

derivative-form equation that we started with, dy
dx

= 2y3 sinx cosx
3y2 cos2 x+1

.

So, we may use differential-form DEs to help us find solutions of derivative-form
DEs that are in almost-standard form, or are algebraically equivalent to a DE in
almost-standard form, as follows:

1. Perform any algebraic manipulations that may be necessary to put the DE
into “almost-standard” form f1(x, y) dy

dx
= f2(x, y) or −f2(x, y) + f1(x, y) dy

dx
= 0.

Each time we perform an algebraic manipulation, keep track of the region(s) on
which the manipulation gives us an algebraically equivalent DE.

2. Write down the differential-form DE associated with our last derivative-form
DE. If this DE does not pass the test for exactness, look for additional algebraic
manipulations that may yield an exact DE (we may not find any). Again, keep
track of the region(s) on which any algebraic manipulations we use give us an
algebraically equivalent DE.

3. Assuming we have now produced an exact DE on some region(s) R1, R2, . . . ,
find the general solution of that DE on each Ri, in implicit form. This will
be a collection Ei of equations of the form Fi(x, y) = C on Ri, where C is
a “semi-arbitrary” constant as discussed earlier in these notes. Amalgamate
all the collections Ei—hopefully there will only be one or two—into one large
collection E (which may take several lines to write down if there is more than
one region Ri).

4. Discard from E any spurious solutions—those equations whose graphs contain
a vertical line segment, and contain no smooth curves except vertical lines or
line segments. The collection E ′ of equations that remain is the general solution
of the original derivative-form DE, in implicit form, on the union of the regions
Ri.

5. If any of the algebraic manipulations used above did not preserve algebraic
equivalence on the region (or union of regions) R on which we were interested
in the original differential equation, check whether these manipulations may
have resulted in the loss of solutions or the inclusion of spurious solutions.
Adjust E ′ accordingly.

61One argument is as follows. Suppose that the graph of y + y3 cos2 x = c0 contained a vertical
line segment {(x0, y) | y ∈ J}. Then for all y ∈ J we would have y+ y3 cos2 x0 = c0. Differentiating
with respect to y, we would have 1 + 3y2 cos2 x0 = 0 for all y ∈ J . But this is impossible, since
1 + 3y2 cos2 x0 ≥ 1.
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The last step in the procedure above is not one for which we will try to state
general rules; instead, we will illustrate with an example the sort of work that must
be done.

Example 2.68 Solve the differential equation

dy

dx
= − 2x+ 2y

2x+ 3y2
. (2.158)

First we observe that since the right-hand side of (2.158) is not defined when
2x + 3y2 = 0, the only regions in which “solution of (2.158)” has any meaning are
R1 = {(x, y) | 2x + 3y2 > 0} and R2 = {(x, y) | 2x + 3y2 < 0}. On each of these
regions, (2.158) is algebraically equivalent to

(2x+ 2y) + (2x+ 3y2)
dy

dx
= 0, (2.159)

whose associated differential-form equation is

(2x+ 2y)dx+ (2x+ 3y2)dy = 0. (2.160)

Equation (2.160) is exact on the whole plane R2; its left-hand side is dF , where
F (x, y) = x2 + 2xy + y3. Thus the general solution of (2.160) is x2 + 2xy + y3 = C.
We will see shortly that in this example C can be arbitrary, but we do not need that
fact yet.

Every solution of (2.158) is guaranteed to be a solution of (2.159), so in passing
from (2.158) to (2.159) we have not lost any solutions; the only question is whether
we have introduced spurious solutions. We must also check whether we introduced
spurious solutions when passing from (2.159) to (2.160). The latter possibility is easy
to rule out: it is easy to see that (2.160) has no solutions of the form x = constant. (If
x = c were a solution, then we could use y as a parameter for a parametric solution,
yielding (2c+ 2y)× 0 + (2c+ 3y2)dy

dy
= 0 = 2c+ 3y2, impossible since the parameter y

must range over an interval.) Thus every solution curve of (2.160) is a solution curve
of (2.159)

To see whether the graph of x2 + 2xy + y3 = C, for a given C, is an implicit
solution of (2.158) on R1 (or R2) we must check whether its graph contains a smooth
curve in this region. First let us consider the allowed values of C. The only critical
point of F is the origin, so fact (2.114) assures us that the general solution of (2.160)
on {R2 minus the origin} is x2 + 2xy + y3 = C, where C can be any value in the
range of F on this domain. By holding x fixed (say x = 1) and letting y vary over R,
we see that the range of F on this domain is the set of all real numbers. Therefore
the general solution of (2.160) in {R2 minus the origin} is x2 + 2xy + y3 = C, where
C is arbitrary.

Now we must check whether multiplying by 2x+ 3y2 in passing from (2.158) to
(2.159) introduced any spurious solutions: equations x2 + 2xy + y3 = C that are not
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implicit solutions of (2.158). For this, we must check whether for some C, the graph
of x2+2xy+y3 = C fails to contain a smooth curve lying in R1 or R2. But (for any C),
the points of the the graph of x2 +2xy+y3 = C not lying in R1 or R2 lie on the graph
of 2x+3y2 = 0. But the graph of x2+2xy+y3 = C intersects the graph of 2x+3y2 = 0

only at those points (x, y) for which x = −3
2
y2 and

(
−3

2
y2
)2

+ 2
(
−3

2
y2
)

+ y3 = C, the
latter equation simplifying to 9

4
y4−2y3 = C. No matter what the value of C is, there

are at most four numbers y for which 9
4
y4 − 2y3 = C, so the graph of 2x + 3y2 = 0

intersects the graph of x2 + 2xy + y3 = C in at most four points. But the portion of
the graph of x2 + 2xy+ y3 = C that lies in {R2 minus the origin}— the whole graph
unless C = 0—is a smooth curve C. Deleting from C the at-most-four points of C for
which 2x+ 3y2 = 0, what remains is one or more curves each of which lies entirely in
R1 or R2, and hence is a solution-curve of (2.158). Therefore there are no values of C
that we need to exclude, and no spurious solutions. The general solution of (2.158) is
{x2 + 2xy+ y3 = C | C ∈ R, 2x+ 3y2 6= 0}. (Writing the “2x+ 3y2 6= 0” explicitly is
optional, since that constraint is imposed from the moment we write down (2.158).)

In the preceding example, the passage from (2.158) to (2.160) did not intro-
duce any spurious solutions. In the earlier examples, whenever spurious solutions
were introduced, they were of the form x = constant. So it is natural to ask
whether, starting with an “almost-standard” derivative-form DE f1(x, y) dy

dx
= f2(x, y)

or −f2(x, y)+f1(x, y) dy
dx

= 0, algebraic manipulations can ever introduce spurious so-
lutions that are not of the form x = constant. The answer is yes. Failure to preserve
algebraic equivalence can lead to spurious solutions not of the form “one variable =
constant” whether we are working with derivative-form or differential-form DEs. The
next example could have been presented before we ever talked about differential form,
but we have placed it in this section of the notes as a reminder.

Example 2.69 (A spurious solution not of the form x = constant) Let

f(x, y) =

{
ey−ex
y−x if y 6= x,

ex if y = x.

It can be shown that this function is continuously differentiable on the whole xy
plane. (The student should be able to show at least that f is continuous everywhere,
including at points of the line {y = x}.) Therefore, for every initial condition y(x0) =
y0, the corresponding initial-value problem for the DE dy

dx
= f(x, y) has a unique

solution. In particular, this is true when y0 = x0. So for every x0 ∈ R, the initial-
value problem

dy

dx
= f(x, y), y(0) = 0 (2.161)
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has a unique maximal solution.
If we substitute the definition of f(x, y) into (2.161), the DE becomes

dy

dx
=

{
ey−ex
y−x if y 6= x,

ex if y = x.
(2.162)

This equation is neither linear nor separable, so in an attempt to solve we might write
down the associated differential-form equation, which is

−
{

ey−ex
y−x if y 6= x

ex if y = x

}
dx+ dy = 0. (2.163)

It is natural to try to rewrite (2.163) more simply by multiplying through by
y − x. Observing that (y − x)f(x, y) = ey − ex for all (x, y) ∈ R2 (even for those
points with y = x), if we multiply both sides of (2.163) by y − x we obtain

− (ey − ex)dx+ (y − x)dy = 0, (2.164)

which certainly looks much simpler than (2.163). This DE is not exact, and the
student will not succeed in solving it—i.e. finding all solutions—by any method
taught in an introductory DE course. However, one solution is obvious: y = x. This
solution also satisfies the initial condition y(0) = 0. Does this mean that y = x is the
solution of the IVP (2.161)?

The answer is a resounding “No!”. If we define φ(x) = x, and substitute y = φ(x)
into “ dy

dx
= f(x, y)”, then the left-hand side is identically 1, while the right-hand side

is ex. There is no x-interval on which ex ≡ 1. The function φ is not a solution of
dy
dx

= f(x, y).
It is easy to see what went wrong if, instead of writing (2.163) with the two-line

formula for f , we write it as

− f(x, y)dx+ dy = 0 (2.165)

and if, when we multiply through by y − x, we write the result as

− (y − x)f(x, y)dx+ (y − x)dy = 0 (2.166)

rather than in the “simpler” form (2.164). It is obvious that y = x is a solution of
(2.166), whether or not it is a solution of (2.165). Less obvious, but true, is what we
checked above: that y = x is definitely not a solution of (2.161), hence not a solution
of (2.165).

In this example, the general solution of (2.166) consists of the general solution
of (2.165) plus the straight line {y = x}. The equation (2.165) has no solutions
of the form x = constant, so any implicit form of the general solution of (2.165) is
also an implicit form of the general solution of dy

dx
= f(x, y). Thus, in passing from

dy
dx

= f(x, y) to the differential-form equation (2.164), we gained a spurious solution
y = x that is not a solution of the DE we started with.
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In this instance, it was not the transition from derivative form to differential form
that introduced the spurious solution; it was multiplication by the function y − x,
which is zero at lots of points. The equations (2.163) and (2.164) are algebraically
equivalent on the region R1 = {(x, y) | y > x}, and also on the region R2 = {(x, y) |
y < x}. On each of these regions, the two equations have the same general solution.
But they are not algebraically equivalent on the whole xy plane, and their general
solutions on the whole xy plane are different.

2.10 Using derivative-form equations to help solve differential-
form equations

Not yet written.

3 Optional Reading

3.1 The meaning of a differential

Now we are ready to ascribe meaning to a differential.62 However, don’t worry if you
don’t understand the meaning given below. Understanding it is not essential to the
use of differentials in differential equations. In fact, in this section of the notes, there
are no differential equations—just differentials.

A differential Mdx + Ndy is a machine with an input and an output. What it
takes as input is a (differentiably) parametrized curve γ. What it then outputs is a
function, defined on the same interval I as γ. If we write γ(t) = (x(t), y(t)), then the
output is the function whose value at t ∈ I is M(x(t), y(t))dx

dt
+N(x(t), y(t))dy

dt
.

We use the language “Mdx + Ndy acts on γ” to refer to the fact that the
differential takes γ as an input and then “processes” it to produce some output.
Notation we will use for the output function is (Mdx + Ndy)[γ]. This is the same
function that we expressed in terms of t in the previous paragraph:

62Differentials can be understood at different levels of loftiness. The level chosen for these notes
is a higher than in Calculus 1-2-3 and introductory DE textbooks, but it is not the highest level.
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the function obtained

when the differential

acts on γ︷ ︸︸ ︷
(Mdx+Ndy)[γ] (t)︸ ︷︷ ︸

value of the function

(Mdx+Ndy)[γ]

at t

= M(x(t), y(t))
dx

dt
+N(x(t), y(t))

dy

dt
. (3.1)

The notation on the left-hand side of (3.1) may look intimidating and unwieldy, but
it (or something like it) is a necessary evil for this section of the notes. It will not be
used much outside this section.

Let us make contact between the meaning of differential given above, and what
the student may have seen about differentials before. The easiest link is to differen-
tials that arise as notation in the context of line integrals in Calculus 3. (Students
who haven’t completed Calculus 3 should skip down to the paragraph that includes
equation (3.5), read that paragraph, and skip the rest of this section.) Recall that
one notation for the line integral of a vector field M(x, y)i +N(x, y)j over a smooth,
oriented curve C in the xy plane is∫

C

M(x, y)dx+N(x, y)dy. (3.2)

To see that the integrand in (3.2) is the same gadget we described above, let’s
review the rules you learned for computing such an integral:

1. Choose a continuously differentiable, nonstop parametrization γ of C. Write
this as γ(t) = (x(t), y(t)), t ∈ [a, b].63 Depending on your teacher and textbook,
you may or may not have been introduced to using a single letter, such as γ or
r, for the parametrization. But almost certainly, one ingredient of the notation
you used was “(x(t), y(t))”.

2. In (3.2), make the following substitutions: x = x(t), y = y(t), dx = dx
dt
dt, dy =

dy
dt
dt, and

∫
C

=
∫ b
a
. The integral obtained from these substitutions is

∫ b

a

{
M(x(t), y(t))

dx

dt
+N(x(t), y(t))

dy

dt

}
dt. (3.3)

63The parametrization should also consistent with the given orientation of C, and to be one-to-
one, except that “γ(a) = γ(b)” is allowed in order to handle closed curves. These technicalities is
unimportant here; the author is trying only to jog the student’s memory, not to review line integrals
thoroughly.
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3. Compute the integral (3.3). The definition of (3.2) is the value of (3.3):

∫
C
M(x, y)dx+N(x, y)dy =

∫ b

a

{
M(x(t), y(t))

dx

dt
+N(x(t), y(t))

dy

dt

}
dt.

(3.4)

(You also learn in Calculus 3 that this definition is self-consistent: no matter
what continuously differentiable, non-stop parametrization of C you choose64,
you get the same answer.)

A casual glance at (3.4) suggests that we have used the following misleading
equality:

“M(x, y)dx+N(x, y)dy =

{
M(x(t), y(t))

dx

dt
+N(x(t), y(t))

dy

dt

}
dt.” (3.5)

But that is not quite right. The left-hand side and right-hand side are not the same
object. Only after we are given a parametrized curve γ can we produce, from the
object on the left-hand side, the function of t in braces on the right-hand side.

In addition, in constructing the integral on the right-hand side of (3.4), we did
not confine our substitutions to the integrand of the integral on the left-hand side.
We made the substitution “

∫
C →

∫ b
a

” as well. Attempting to equate pieces of the
notation on the left-hand side with pieces of the notation on the right-hand side helps
lead to a wrong impression of what is equal to what. Instead of making this fallacious
attempt, understand that (3.4) is simply a definition of the whole left-hand side.
The data on the left-hand side are reflected in the computational prescription on the
right-hand side as follows:

1. The right-hand side involves functions x(t), y(t) on a t-interval [a, b]. These
two functions and the interval [a, b] give us a parametrized curve γ, defined by
γ(t) = (x(t), y(t)). The curve C on the left-hand side tells us which γ’s are
allowed: only those having image C.

2. Once we choose such a γ, what is the integrand on the right-hand side? It is
exactly the quantity (Mdx+Ndy)[γ](t) in (3.1). The effect of the “M(x, y)dx+
N(x, y)dy” on the left-hand side has been to produce the function (Mdx +
Ndy)[γ] when fed the parametrized curve γ.

Thus, the differential that appears as the integrand on the left-hand side is exactly
the machine we described at the start of this section.

64Subject to the other conditions in the previous footnote.
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There is one other topic in Calculus 3 that makes reference to differentials (if the
instructor chooses to discuss them at that time): the tangent-plane approximation
of a function of two variables. The differentials you learned about in that context
are not quite the same gadgets as the machines we have defined. They are related,
but different. To demonstrate the precise relation, there are two things we would
need to do: (1) restrict attention to exact differentials, and (2) discuss what kind of
gadget the value of a differential at a point—an expression of the form M(x0, y0)dx+
N(x0, y0)dy—is. This would require a digression that we omit, in the interests of both
brevity and comprehensibility.

3.2 Exact equations: further exploration

Example 3.1 In the setting of Example 2.60, assume that Mdx+Ndy has no singu-
lar points (equivalently, F has no critical points) in R. We claim that in this case, the
general solution of (2.104) on R, in implicit form, is (2.110), but where the allowed
values of C are those for which the graph of (2.110) contains even a single point of R.
Equivalently, the set of allowed values of C is the range of F on the domain R.

To see that this is the case, it suffices to show that if, for a given C, the graph
of (2.110) contains a point (x0, y0) of R, then the graph contains a smooth curve in
R. So, with C held fixed, assume there is such a point (x0, y0). Remember that,
by definition of “exact”, the functions ∂G

∂x
, ∂G
∂y

are continuous on R. Since we are

assuming that F has no critical points in R, the point (x0, y0) is not a critical point
of F , so at least one of the partial derivatives ∂G

∂x
(x0, y0), ∂G

∂y
(x0, y0) is not zero. Then:

• If ∂G
∂y

(x0, y0) 6= 0, then, since we are assuming that ∂G
∂x

and ∂G
∂y

are continuous on

R, we can apply the Implicit Function Theorem (Theorem 2.5) to deduce that
is an open rectangle I1×J1 containing (x0, y0), and a continuously differentiable
function φ with domain I1 such that the portion of the graph of (2.108) contained
in I1 × J1 is the graph of y = φ(x), i.e. the set of points {(x, φ(x)) | x ∈ I1}.
This same set is the image of the parametrized curve given by{

x(t) = t
y(t) = φ(t)

}
, t ∈ I1.

This parametrized curve γ is continuously differentiable, and it is non-stop since
dx
dt

= 1 for all t ∈ I1. Hence the image of γ is a smooth curve contained in the
graph of (2.110). Since (x0, y0) ∈ R, and R is an open set, a small enough
segment of this curve, passing through (x0, y0), will be contained in R.

• If ∂G
∂x

(x0, y0) 6= 0, then (reversing the roles of x and y in the Theorem—e.g.

by defining G̃(x, y) = F (y, x)), the Implicit Function Theorem tells us that
there is an open rectangle I1 × J1 containing (x0, y0), and a continuously dif-
ferentiable function φ with domain J1 such that the portion of the graph of
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(2.108) contained in I1 × J1 is the graph of x = φ(y), i.e. the set of points
{(φ(y), y) | y ∈ J1}. This graph is exactly the image of the parametrized curve
γ given by {

x(t) = φ(t)
y(t) = t

}
, t ∈ J1.

As in the previous case, γ is continuously differentiable and non-stop. Hence
the image of γ is again a smooth curve contained in the graph of (2.110), and
again a small enough segment of it, passing through (x0, y0), will be contained
in R.

Example 3.2 Consider again the DE

xdx+ ydy = 0. (3.6)

Defining F (x, y) = 1
2
(x2 + y2) (on the whole plane R2), the left-hand side of (3.6) is

the exact differential dF . The function F has only one critical point, (0, 0), and the
functions M(x, y) = x and N(x, y) = y are continuous on the whole xy plane. So if
we let R = {R2 minus the origin}, F has no critical points in R, and Example 3.1
applies. The range of F on R is the set of positive real numbers, which for the sake
of Definition 2.61, we view as {C ∈ R | C > 0}. Therefore the general solution of
xdx + ydy = 0 in R is

{
1
2
(x2 + y2) = C | C > 0

}
, which, by renaming the constant,

we can write more simply as {
x2 + y2 = C | C > 0

}
. (3.7)

The graph of each solution is a circle. The collection of these circles is what we call the
general solution of (3.6) in R (according to Definition 2.61), and the general solution
in R “fills out” the region R (every point of R lies on the graph of x2 + y2 = C for
some C > 0).

If we look at (3.6) on the whole xy plane rather than just R, then Example 3.1
no longer applies (because of the critical point at the origin), but Example 2.60 still
applies. From the analysis above, every point of the xy plane other than the origin
lies on a solution curve with equation x2 + y2 = C with C > 0. For C = 0, the
equation “F (x, y) = C” becomes x2 +y2 = 0. The graph of this equation is the single
point (0, 0), and contains no smooth curves. For C < 0, the graph of x2 + y2 = C
is empty. Hence the general solution of (3.6) in implicit form, with no restriction on
the region, is the same as the general solution on R in implicit form, namely (3.7).
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Example 3.3 Consider again the DE from Example 2.57,

ydx+ xdy = 0. (3.8)

The left-hand side is the exact differential dF (on the whole plane R2), where
F (x, y) = xy. The function F has only one critical point, (0, 0), and the functions
M(x, y) = y and N(x, y) = x are continuous on the whole xy plane. So, as in the
previous example if we let R = {R2 minus the origin}, there are no critical points in
R, and Example 3.1 applies. This time, for every C ∈ R there is a point in R for
which xy = C. Therefore the general solution of ydx+ xdy = 0 in R is

xy = C, (3.9)

where C is a “true” arbitrary constant—every real value of C is allowed.
Note that for C 6= 0, the graph of xy = C consists of two solution curves (the

two halves of a hyperbola) in R. For C = 0, there are four solution curves in R: the
positive x-axis, the negative x-axis, the positive y-axis, and the negative y-axis. The
set of solution-curves in R again fills out R.

If we look at (3.8) on the whole xy plane rather than just R, then from the
preceding, the only point we do not yet know to be on a solution curve is the origin.
But, as we saw in Example 2.57, the origin is on a solution curve; in fact it is on two
of them: the x-axis and the y-axis. So the general solution (without the words “in
implicit form”, and with no restriction on the region) is the set of the half-hyperbolas
noted above, plus the x-axis and the y-axis. The general solution of (3.8), with no
restriction on the region, is again (3.9). But in contrast to Example 3.2, this time the
general solution fills out the whole plane R2.

Students who’ve taken Calculus 3 have studied equations that are explicitly of
the form “F (x, y) = C” before. For a given constant C and function F , the graph of
F (x, y) = C is called a level-set of F . (Your calculus textbook may have used the
term “level curve” for a level-set of a function of two variables, because most of the
time—though not always—a non-empty level-set of a function of two variables is a
smooth curve or a union of smooth curves.65) A level-set may have more than one

65Note to students. This is true provided that the second partial derivatives of the function exist
and are continuous on the domain of F . The definition of “most of the time” is beyond the scope
of these notes. However, one instance of “most of the time” is the case in which there are only
finitely many C’s for which the graph of F (x, y) = C is a non-empty set that is not a union of one
or more smooth curves. For example, for the equation x2 + y2 = C, only for C = 0 is the graph
both non-empty and not a smooth curve.

Note to instructors: The “most of the time” statement is a combination of the Regular Value
Theorem and Sard’s Theorem for the case of a C2 real-valued function F on a two-dimensional
domain. The Regular Value Theorem asserts that if C is not a critical value of F (i.e. if F−1(C)
contains no critical points), then F−1(C) is a submanifold of the domain, which for the dimensions
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connected component, such as the graph of xy = 1: there is no way to move along the
portion of this hyperbola in the first quadrant, and reach the portion of the hyperbola
in the third quadrant. Our definition of “smooth curve” prevents any level-set with
more than one connected component from being called a smooth curve. However, it
is often the case that a level-set is the union of several connected components, each of
which is a smooth curve. From Examples 2.60 and 3.1 we can deduce the following:

If F has continuous second partial derivatives in the region
R, then the set of solution curves of dF = 0 on R is the
set of smooth curves in R that are contained in level-sets of F .


(3.10)

Statement (3.10) is not an “if and only if”. For example, the function F (x, y) =
xy has a critical point at the origin, but the general solution of dF = 0 is still the set
of smooth curves in R2 that are contained in level-sets of F . (One of these smooth
curves is the x-axis, one is the y-axis, and the others are half-hyperbolas.) For an
example of a level-set that contains smooth curves, but is not a union of smooth curves
(i.e. has a point that’s not contained in any of the smooth curves in the level-set),
see Example 2.62 elsewhere in these notes.

4 Appendix

4.1 The Fundamental Theorem of ODEs

The “Fundamental Theorem of ODEs” (“FTODE”) is the theorem asserting that,
under certain rather general conditions, an initial-value problem has a unique solution.
The first-order case is the theorem below. In this theorem, “∂f

∂y
” denotes the partial

derivative of f with respect to its second variable.

Theorem 4.1 (FTODE) Let f be a function of two variables, and consider the
initial-value problem

dy

dx
= f(x, y), y(x0) = y0 . (4.1)

Assume that f and ∂f
∂y

are continuous on some rectangle {(x, y) : a < x < b, c < x <

d} containing the point (x0, y0). Then there exists a number δ > 0 such that for every
interval I contained in (x0 − δ, x0 + δ), and containing x0, the initial-value problem
(4.1) has a unique solution on I.

Most textbooks (including [1], [3], and [4]), state a version of this theorem that
is far too weak to be useful, effectively replacing the last sentence with, “Then there

involved here means “empty or a union of smooth curves”. Sard’s Theorem asserts that the set of
critical values (not critical points!) of F has measure zero.
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exists a number δ > 0 such that the initial-value problem (4.1) has a unique solution
on (x0 − δ, x0 + δ).” This weaker statement allows for the possibility that (4.1) has
a unique solution on (x0 − δ, x0 + δ), but has more than one solution on a smaller
interval, e.g. (x0 − δ

2
, x0 + δ

2
), a phenomenon ruled out by the more-carefully stated

theorem above.66 Textbooks that state the weaker theorem sometimes implicitly use
Theorem 4.1, without observing it is not implied by the weaker version.
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