Non-book problems

1. Verify that for any nonzero constant b, the function f(z) = + cosh(br) satisfies the differential

b
equation
Py g () 2
da? dr)
(Recall that the function “cosh” is defined by cosh(z) = 3(e* 4 € 7).)

2. Consider the equation
w2 4 y? =4. (1)

On the interval —2 < x < 2, there are two continuous functions of = determined by (1).
These may be expressed by the equations y = V4 — 22 and y = —v4 — 22. Show directly,
without implicit differentiation, that each of these two equations is an (explicit) solution of

the differential equation = + y dy/dx = 0. (Note that this is the DE obtained by implicitly
differentiating (1) with respect to x, and then dividing by 2 just to simplify.)

3. Solve the equation

dy wsinz

de  Iny
4. Solve the equation

dy tan"'z

de — ye%

(Notational reminder: “tan™!” denotes the inverse-tangent function, also called arctangent, and
also written “arctan”. It does not denote the reciprocal of the tangent function, which is the
cotangent function “cot”.)

5. Let p be a function that is differentiable on the whole real line, and consider the separable
differential equation

Y o). )

(Here, the function g(z) that you're used to seeing is just the constant function 1.)

(a) Show that the family of all solutions of (2) is translation-invariant in the following sense:
if y = ¢(z) is a solution on an interval a < z < b, and k is any constant, then y = ¢(x — k) is
a solution on the interval a + k < x < b+ k. (Said another way: horizontally translating the
graph of a solution by any amount, you get the graph of another solution.)

(b) Using the Fundamental Existence/Uniqueness theorem for first-order initial-value prob-
lems (Theorem 5.1 in “Some note on first-order ODEs”, a much-weakened version of which is



Theorem 1 on p. 11 in the textbook), show that for every point (zg,%0) € R?, the initial-value
problem

dy

% = p(?/)v y(iL’o) = Yo, (3)

has a unique solution on some open interval containing x.

(c) Assume that there are numbers ¢ < d such that p(c) = p(d) = 0. Use the “Uniqueness”
part of the Fundamental Existence/Uniqueness Theorem to show all of the following. (Once
you see how to do any one of these, the other two should be easy.)

o (i) If yo > d, and ¢ is a solution of (3) defined on an open interval I, containing x¢, then
¢(x) > d for all z € I,,. (Note: you are not allowed to assume that I, is a small interval;
you have to show that what’s stated is true no matter how large I, is. The interval I,
could even be the whole real line.)

e (ii) If yo < ¢, then the solution ¢ of (3) satisfies ¢(x) < ¢ for all x € I,,. (Same note as
above applies.)

e (iii) If ¢ < yy < d, then the solution ¢ of (3) satisfies ¢ < ¢(x) < d for all z € I,,. (Same
note as above applies.)

6. Solve the differential equation % = zy?(1 — y?).

7. For the differential equation % = 2% — 4 (whose general solution was found in class, with

different names for the variables), solve the initial-value problem with each of the following
initial conditions: (a) z(0) = 2; (b) z(0) = 1; (c) z(0) = —2; (d) z(0) = —3; (e) z(—3In5) = 3.
In each case, state the domain of the (maximal) solution.

8. Solve the equation

dy _ xy’
dr 1+ 22
with the initial condition y(0) = —1. What is the domain of the (maximal) solution?

9. Solve the following differential equations.
du 2,

(a) G+ 7u=¢e', t<0.

(b) % — (tanz)y =secxlnz, 0<x <7/2.

(c) 2% — 3y = 28 tan~' 2.
10. Show that if F} and F5, are continuously differentiable functions on an open rectangle R in
the zy plane, and dF, = dF; throughout R, then F; and F; differ by a constant (i.e. there is a
constant C' such that Fy(x,y) = Fi(z,y) + C for all (x,y) € R).



11. Solve the following differential equations and/or initial-value problems.
) (s+ 1)t ds — (s* + 1)(t* 4+ 1)dt = 0.

(a

(b) (u+v* —4) L =2u+1-v

(c) (760 4 67r)dO + 12dr = 0.

(d) 2w — ze®)dx 4+ x dw = 0.

(e) 6:1:—1+y+(:c—|—3y )& =0, y(1)=2.
)

(f) x dz = 0.

12. Passing the “Exactness Test” not sufficient for exactness on domain with a
hole. As discussed in class and in the book, if M and N are continuously differentiable
(i.e. have continuous first partial derivatives) on an open rectangle R in the zy plane, and
M, = N, throughout R, then Mdx 4+ Ndy is exact on R. A rectangle is an example of what
mathematicians call a simply connected region: a region with “no holes”. (The intuitive notion
of “no holes” can be given a precise definition, but not in MAP 2302.) It can be shown that on
any simply connected region R, not just rectangles, if M and N are continuously differentiable,
then Mdx + Ndy is exact on R if and only if M, = N, throughout R.

If R is not simply connected, then “M, = N,” is still a necessary condition for exactness
on R, but not a sufficient condition: there are always differentials that satisfy M, = N, but
that are not exact. You will construct an example in this exercise. The non-simply-connected
region we will use is

R={(z,y) € R?| (2,y) # (0,0)}, (4)
i.e. R? with the origin removed. This region has a “hole” at the origin. On R, define
M(l'ay):ma N(%Z/):m (5)
For the rest of this exercise, “R” always means the region in (4), and “M” and “N” always
mean the functions in (5).

(a) Show that M and N are continuously differentiable on R and that M, = N, throughout
R.

(b) Show that on the set {(z,y) € R? | x and y are both nonzero} (i.e. R? with the
coordinate axes removed),

M (z,y)dx + N(z,y)dy = d(tan_l(%)) = d(—tan_l(g)).

(c) Define four functions as follows, with the indicated domains.



Fright(xvy) = tanfl(y), I>0.

i
i v
Fopper(T,y) = —tanfl(g)—kg, y > 0.
Feon(z,y) = tan YY) 47, z <.
xr
3
Fona(ry) = —tan™(5)+ 2y <o
)

Show that the following four identities hold:

Fupper(2,Yy) = Fiigne(z,y) throughout open quadrant I.
Fete(,y) = Fupper(z,y) throughout open quadrant II.

Flower(,9) Fegs(z,y) throughout open quadrant III.

Frignt(z,y) Flower (7, y) + 27 throughout open quadrant IV.

Quadrants I-IV are the usual quadrants of the xy plane, and “open quadrant” means “quadrant
with the coordinate axes removed”.

(d) Use the result of exercise 9 (of these non-book problems) to show the following:

o Flpper is the only continuously differentiable function defined on the entire open upper
half-plane {(x,y) € R*: y > 0} whose differential is M dz + N dy on this half-plane and
that coincides with Flign, on open quadrant I.

e [ is the only continuously differentiable function defined on the entire open left half-
plane {(x,y) € R?: x < 0} whose differential is M dz + N dy on this half-plane and that
coincides with F,pper on open quadrant II.

® [Fower 18 the only continuously differentiable function defined on the entire open lower
half-plane {(x,y) € R?: y < 0} whose differential is M dx + N dy on this half-plane and
that coincides with Fj. on open quadrant III.

(e) Show that because the identities in part (c¢) hold, the following definition of a function
F on the domain

{(z,y) € R?: (2,y) # (a,0) for any a > 0} (6)

(i.e. R? with the origin and positive z-axis removed) is unambiguous, even though within each
open quadrant the definition gives two different formulas for F"



F(z, = Figne(z,y) in open quadrant I.
F(z, = Fuper(z,y) ify >0, ie. for (z,y) in the open upper half-plane.
F Fege(z,y) if <0, ie. for (x,y) in the open left half-plane.
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= Fower(z,y) ify <0, ie. for (z,y) in the open lower half-plane.
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x, = Figmt(z,y) + 27 in open quadrant IV.

This function has a simple geometric interpretation: F(z,y) is the polar coordinate
6 € (0,2m) of the point (z,y).

(f) Use part (d) to show that F'is the only differentiable function defined on the domain
(6) whose differential is M dx + N dy on this domain and that coincides with Fjign on open
quadrant I.

(g) Show that for all 2o > 0, lim, o1 F(zo,y) = 0, while lim,_,o_ F(zo,y) = 2.

(h) Use part (g) to show that there is no continuous function defined on the whole domain
R (see (4)) that coincides with F on the domain (6). Then, combine this fact with part
(f) to show that there is nmo continuously differentiable function on R whose differential is
M dxz+ N dy on this domain and that coincides with Fypper on open quadrant I. (i) Use exercise

9 to show that if GG is any continuously differentiable function defined on open quadrant I for
which dG = Mdx 4+ Ndy, then, on open quadrant I, G differs from F,pe, only by an additive
constant.

(j) Use parts (h) and (i) to show that there is no differentiable function H defined on all
of R for which dH = Mdx + Ndy. Thus, Mdx + Ndy is not exact on R, despite satisfying
M, = N, at every point of R.

Fact: It is accepted practice to write “d¢” for the differential _=-%~dx + z7>dy on R, even
though there is no differentiable function 6 defined on all of R whose differential is d6!

13. As remarked in the textbook in the paragraph that starts at the bottom of p. 194, solving
a Cauchy-Euler (pronounced “Co-she Oiler”) equation on the domain-interval (0, c0) gives us a
way to solve it on the domain-interval (—oo,0) as well. In this problem we amplify the book’s
remark and consider some examples.

(a) Fix numbers a, b, ¢ (with a # 0) and consider the second-order homogeneous Cauchy-
Euler equation

2

d*y dy
—Z L ht—= = 0.
a2 + L +cy=0 (7)

Using the Chain Rule and the substitution ¢ = —u, show that (7) for ¢ < 0 is equivalent
to the equation

at?



2

au2% + bug—i +cz=0 (8)
for u > 0, where z(u) = y(t) = z(—t). Except for the names of the variables, equations (7) and
(8) are the same. Use this to show that if ¢ — ¢(t) is a solution of at®y” + bty’ + cy = 0 on
the interval {t > 0}, then t — ¢(—t) is a solution of the same DE on the interval {t < 0}, and
vice-versa. (See this footnote! for the meaning of “—”.) Thus show that if ¢ — yge,(t) is the
general solution of (7) on the interval {¢ > 0}, then ¢ — ygen(|t|) is the general solution of (7)
on the interval {¢t < 0}, as well as on the interval {¢t > 0}.

(b) Find the general solution t — y(t) of

6t°y" +ty +y =0 (9)

on the interval {¢ > 0}. Then, using part (a) above, find the general solution of (9) on the
interval {t < 0}.

(c) Find the general solution t — y(t) of
t2y" 4+ 5ty + 4y =0 (10)

on the interval {¢ > 0}. Then, using part (a) above, find the general solution of (10) on
the interval {¢ < 0}. (Remember that, in all these problems, since the DE names ¢ as its
independent variable, your answer must be expressed purely in terms of ¢, not wholly or partly
in terms of any other variable you used along the way.)

(d) Find the general solution ¢ +— y(t) of
2y + 2ty +y=0 (11)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (11) on the
interval {t < 0}.

IThe symbol “~” is read “goes to” or (in more advanced classes) “maps to”. It is simply a way of giving
a name, possibly temporarily, to the domain-variable of a function, without having to name the function. For
example, “t — ¢(—t)” is a compact way of writing “the function ¢ defined by 1 (t) = ¢(—t)”, or “the function
g defined by g(x) = ¢(—x)”.



