Non-book problems

1. Verify that for any nonzero constant b, the function f(z) = + cosh(br) satisfies the differential

b
equation

dy dy\*
— —bhy/1 =] =0.
dx? * (dx) 0

(Recall that the function “cosh” is defined by cosh(z) = 3(e* 4 e 7).)

2. Solve the following differential equations.
du 2, _
(a) +Zu=¢€', t<0.
(b) & _ (tanz)y =secz Inz, 0<x < /2.

dzx

2dy — 6
(c) 2?¥ — 3ry = 2° arctan z.

3. Solve the equation

dy xsinx

der  Iny

4. Solve the equation

dy  arctanx
de — ye

5. Solve the equation % = xy*(1 — ¢?).

6. Let p be a function that is continuously differentiable (i.e., for which p’ exists and is contin-
uous) on the the whole real line, and consider the separable differential equation

dy
— = . 1
) (1
(Above, the “g(x)” that you're used to seeing on the right-hand side of a separable equation
is just the constant function 1. Below, the hypotheses on the function p matter only for parts
(b) and (c), not for part (a).

(a) Show that the family of all solutions of (1) is translation-invariant in the following sense:
if y = ¢(x) is a solution on an interval a < x < b, and k is any constant, then y = ¢(x — k) is



a solution on the interval a + k < x < b+ k. (Said another way: horizontally translating the
graph of a solution by any amount, you get the graph of another solution.)

(b) Using the Fundamental Theorem of Ordinary Differential Equations (in the section of
the handout “Some notes on first-order ODEs” that bears this name) show that for every point
(7o,y0) € R?, the initial-value problem

dy _
dr

has a unique solution on every sufficiently small open interval containing x.

(), y(zo) = vo, (2)

(c) Assume that there are numbers ¢ < d such that p(c) = p(d) = 0. Use the “Uniqueness”
part of the FTODE to show all of the following. (Once you see how to do any one of these, the
other two should be easy.)

e (i) If yo > d, and ¢ is a solution of (2) defined on an open interval I, containing z,, then
¢(z) > dfor all x € I,. (Note: you are not allowed to assume that I,, is a small interval;
you have to show that what’s being stated above is true no matter how large I, is. The
interval I, could even be the whole real line.)

e (ii) If yo < ¢, then the solution ¢ of (2) satisfies ¢p(z) < ¢ for all z € I,,,. (Same note as
above applies.)

e (iii) If ¢ < yo < d, then the solution ¢ of (2) satisfies ¢ < ¢(x) < d for all z € I,,,. (Same
note as above applies.)

7. Solve the equation

dy  wxy’
dr /14 22
with the initial condition y(0) = —1. What is the domain of the (maximal) solution?
8. For the differential equation ‘fl—f = 22 — 4 (whose general solution was found in class [or

will be, by the time this problem is assigned], possibly with different names for the variables),
solve the initial-value problem with each of the following initial conditions: (a) z(0) = 2; (b)
2(0) = 1; (c) #(0) = =2; (d) #(0) = —=3; (e) z(—31n5) = 3. In each case, state the domain of

the (maximal) solution.

9. Show that if F} and F; are continuously differentiable functions on an open rectangle R in
the zy plane, and dF, = dF; throughout R, then F; and F; differ by a constant (i.e. there is a
constant C' such that Fy(x,y) = Fi(z,y) + C for all (z,y) € R).



10. Solve the following differential equations and/or initial-value problems.
) (s+ 1)t ds— (s> + 1)(t* 4+ 1)dt = 0.

b) (u+v*—4)% =2u+1—w.

(a

(

(c) (70 + 6r)df + 12dr = 0.
(d) (2w — e®)dz + 2 dw = 0.
(

e) 6 —1+y+ (v +3y° )% =0, y(1) =2

(f> Qy 1 Y= 0.

11. Passing the “Exactness Test” not sufficient for exactness on domain with a
hole. As discussed in class and in the book, if M and N are continuously differentiable
(i.e. have continuous first partial derivatives) on an open rectangle R in the zy plane, and
M, = N, throughout R, then Mdx 4+ Ndy is exact on R. A rectangle is an example of what
mathematicians call a simply connected region: a region with “no holes”. (The intuitive notion
of “no holes” can be given a precise definition, but not in MAP 2302.) It can be shown that on
any simply connected region R, not just rectangles, if M and N are continuously differentiable,
then Mdxz + Ndy is exact on R if and only if M, = N, throughout R.

If R is not simply connected, then “M, = N,” is still a necessary condition for exactness
on R, but not a sufficient condition: there are always differentials that satisfy M, = N, but
that are not exact. You will construct an example in this exercise. The non-simply-connected
region we will use is

R={(z,y) € R*: (z,y) # (0,0)}, (3)
i.e. R? with the origin removed. This region has a “hole” at the origin. On R, define
M(l'ay):ma N(%y):m- (4)

For the rest of this exercise, “R” always means the region in (3), and “M” and “N” always
mean the functions in (4).

(a) Show that M and N are continuously differentiable on R and that M, = N, throughout
R.

(b) Show that on the set {(z,y) € R? : x and y are both nonzero} (i.e. R? with the
coordinate axes removed),

M (z,y)dx + N(z,y)dy = d(arctan(%)) =d(— arctan(g)).



(¢) Define four functions as follows, with the indicated domains.

Frigni(z,y) = arctan(g), x> 0.

T
Fupper(,y) = — arctan(g) + ga y>0.
Fee(z,y) = arctan(g) +7m, x<0.
x
3
Fower(z,y) = — arctan(f) + g, y <0.
Y

Show that the following four identities hold:

Fipper(,y) = Fignt(x,y) throughout open quadrant I.
Fet(z,y) = Fupper(x,y) throughout open quadrant II.

Flower(%,y) = Feg(z,y) throughout open quadrant III.

Fight(%,y) = Flowe(z,y) + 21 throughout open quadrant IV.

Quadrants I-IV are the usual quadrants of the xy plane, and “open quadrant” means “quadrant
with the coordinate axes removed”.

(d) Use the result of exercise 9 (of these non-book problems) to show the following:

® [pper is the only continuously differentiable function defined on the entire open upper
half-plane {(x,y) € R* : y > 0} whose differential is M dz + N dy on this half-plane and
that coincides with Flig on open quadrant I.

o [ is the only continuously differentiable function defined on the entire open left half-
plane {(z,y) € R? : x < 0} whose differential is M dx + N dy on this half-plane and that
coincides with Fy,per on open quadrant II.

® [lower is the only continuously differentiable function defined on the entire open lower
half-plane {(x,y) € R* : y < 0} whose differential is M dz + N dy on this half-plane and
that coincides with Fi.i on open quadrant III.

(e) Show that because the identities in part (c) hold, the following definition of a function
F on the domain

{(z,y) € R*: (z,y) # (a,0) for any a > 0} (5)

(i.e. R? with the origin and positive z-axis removed) is unambiguous, even though within each
open quadrant the definition gives two different formulas for F:
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F(z, = Figne(z,y) in open quadrant I.
F(z, = Fuper(z,y) ify >0, ie. for (z,y) in the open upper half-plane.
F Fege(z,y) if <0, ie. for (x,y) in the open left half-plane.

o

RS
SR TRSTR TR SS

Fower(z,y) ify <0, ie. for (x,y) in the open lower half-plane.

Y

(
(
(
(
(

~— — — S ~—

o

x, = Figmt(z,y) + 27 in open quadrant IV.
This function has a simple geometric interpretation: F(z,y) is the polar coordinate
6 € (0,2m) of the point (z,y).

(f) Use part (d) to show that F'is the only differentiable function defined on the domain
(5) whose differential is M dx + N dy on this domain and that coincides with Fjign on open
quadrant I.

(g) Show that for all 2y > 0, lim,_,o; F(zo,y) = 0, while lim,_,o_ F(zo,y) = 27.

(h) Use part (g) to show that there is no continuous function defined on the whole domain
R (see (3)) that coincides with F' on the domain (5). Then, combine this fact with part (f) to
show that there is no continuously differentiable function on R whose differential is M dx+ N dy
on this domain and that coincides with Fp,e: on open quadrant I.

(i) Use exercise 9 to show that if G is any continuously differentiable function defined on
open quadrant I for which dG = Mdx + Ndy, then, on open quadrant I, G differs from Fipper
only by an additive constant.

(j) Use parts (h) and (i) to show that there is no differentiable function H defined on all
of R for which dH = Mdx + Ndy. Thus, Mdx + Ndy is not exact on R, despite satisfying
M, = N, at every point of R.

Fact: It is accepted practice to write “d¢” for the differential _=%~dx + z7>dy on R, even

though there is no differentiable function 6 defined on all of R whose differential is d6!

12. Show by induction on k that if an operator L is linear, then for all £ > 1, all constants
1,0, ..., Ck, and all functions fi, fo, ... fr in the set of functions f for which L[f] is defined,

Licifi +cafo + - +cpfu] = el L[ fi] + coL[fo] + -+ + cu L fx].

(Several weeks ago, I sketched the argument in class. I want you to go through it again on your
own.)

13. Solving a Cauchy-Euler (“Co-she Oiler”) equation on the domain-interval (0, co) gives us a
way to solve it on the domain-interval (—oo, 0) as well. Below, you will see how. some examples.



(a) Fix numbers a, b, ¢ (with a # 0) and consider the second-order homogeneous Cauchy-
Euler equation

d? d
ath—tg + btd—i +cy =0. (6)

Using the Chain Rule and the substitution ¢ = —u, show that (6) for ¢ < 0 is equivalent
to the equation

d’z dz

auQE—l—bu@—ircz:O (7)
for u > 0, where z(u) = y(t) = z(—t). Except for the names of the variables, equations (6) and
(7) are the same. Use this to show that if ¢ — ¢(¢) is a solution of at*y” + bty’ + cy = 0 on
the interval {¢t > 0}, then t — ¢(—t) is a solution of the same DE on the interval {¢t < 0}, and
vice-versa. (See this footnote' for the meaning of “—7.) Thus show that if ¢ — ygen () is the
general solution of (6) on the interval {¢ > 0}, then ¢ — yuen(|t|) is the general solution of (6)
on the interval {¢t < 0}, as well as on the interval {¢ > 0}.

(b) Find the general solution ¢ — y(t) of

6t°y" +ty' +y=0 (8)
on the interval {¢ > 0}. Then, using part (a) above, find the general solution of (8) on the
interval {t < 0}.

(c) Find the general solution t — y(t) of
t2y" + 5ty + 4y =0 (9)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (9) on the
interval {t < 0}. (Remember that, in all these problems, since the DE names ¢ as its independent
variable, your answer must be expressed purely in terms of ¢, not wholly or partly in terms of
any other variable you used along the way.)

(d) Find the general solution t — y(t) of
2" + 2ty +y =0 (10)

on the interval {¢ > 0}. Then, using part (a) above, find the general solution of (10) on the
interval {t < 0}.

'Recall that symbol “—” is read “goes to” or (in more advanced classes) “maps to”. It is simply a way of
giving a name, possibly temporarily, to the domain-variable of a function, without having to name the function.
For example, “t — ¢(—t)” is a compact way of writing “the function ¢ defined by ¥ (t) = ¢(—t)”.
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