
Non-book problems

1. Verify that for any nonzero constant b, the function f(x) = 1
b
cosh(bx) satisfies the differential

equation

d2y

dx2
− b

√
1 +

(
dy

dx

)2

= 0.

(Recall that the function “cosh” is defined by cosh(x) = 1
2
(ex + e−x).)

2. Solve the following differential equations.

(a) du
dt

+ 2
t
u = et, t < 0.

(b) dy
dx

− (tanx)y = secx lnx, 0 < x < π/2.

(c) x2 dy
dx

− 3xy = x6 arctanx.

3. Solve the equation

dy

dx
=

x sinx

ln y
.

4. Solve the equation

dy

dx
=

arctanx

ye2y
.

5. Solve the equation dy
dx

= xy2(1− y2).

6. Let p be a function that is continuously differentiable (i.e., for which p′ exists and is contin-
uous) on the the whole real line, and consider the separable differential equation

dy

dx
= p(y). (1)

(Above, the “g(x)” that you’re used to seeing on the right-hand side of a separable equation
is just the constant function 1. Below, the hypotheses on the function p matter only for parts
(b) and (c), not for part (a).

(a) Show that the family of all solutions of (1) is translation-invariant in the following sense:
if y = ϕ(x) is a solution on an interval a < x < b, and k is any constant, then y = ϕ(x− k) is
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a solution on the interval a + k < x < b + k. (Said another way: horizontally translating the
graph of a solution by any amount, you get the graph of another solution.)

(b) Using the Fundamental Theorem of Ordinary Differential Equations (in the section of
the handout “Some notes on first-order ODEs” that bears this name) show that for every point
(x0, y0) ∈ R2, the initial-value problem

dy

dx
= p(y), y(x0) = y0, (2)

has a unique solution on every sufficiently small open interval containing x0.

(c) Assume that there are numbers c < d such that p(c) = p(d) = 0. Use the “Uniqueness”
part of the FTODE to show all of the following. (Once you see how to do any one of these, the
other two should be easy.)

� (i) If y0 > d, and ϕ is a solution of (2) defined on an open interval Ix0 containing x0, then
ϕ(x) > d for all x ∈ Ix0 . (Note: you are not allowed to assume that Ix0 is a small interval;
you have to show that what’s being stated above is true no matter how large Ix0 is. The
interval Ix0 could even be the whole real line.)

� (ii) If y0 < c, then the solution ϕ of (2) satisfies ϕ(x) < c for all x ∈ Ix0 . (Same note as
above applies.)

� (iii) If c < y0 < d, then the solution ϕ of (2) satisfies c < ϕ(x) < d for all x ∈ Ix0 . (Same
note as above applies.)

7. Solve the equation
dy

dx
=

xy3√
1 + x2

with the initial condition y(0) = −1. What is the domain of the (maximal) solution?

8. For the differential equation dx
dt

= x2 − 4 (whose general solution was found in class [or
will be, by the time this problem is assigned], possibly with different names for the variables),
solve the initial-value problem with each of the following initial conditions: (a) x(0) = 2; (b)
x(0) = 1; (c) x(0) = −2; (d) x(0) = −3; (e) x(−1

2
ln 5) = 3. In each case, state the domain of

the (maximal) solution.

9. Show that if F1 and F2 are continuously differentiable functions on an open rectangle R in
the xy plane, and dF2 = dF1 throughout R, then F1 and F2 differ by a constant (i.e. there is a
constant C such that F2(x, y) = F1(x, y) + C for all (x, y) ∈ R).
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10. Solve the following differential equations and/or initial-value problems.

(a) (s+ 1)t ds− (s2 + 1)(t2 + 1)dt = 0.

(b) (u+ v2 − 4) dv
du

= 2u+ 1− v.

(c) (7θ + 6r)dθ + 12dr = 0.

(d) (2w − xex)dx+ x dw = 0.

(e) 6x− 1 + y + (x+ 3y2) dy
dx

= 0, y(1) = 2.

(f) x dx+ 4y3

x2+1
dy = 0.

11. Passing the “Exactness Test” not sufficient for exactness on domain with a
hole. As discussed in class and in the book, if M and N are continuously differentiable
(i.e. have continuous first partial derivatives) on an open rectangle R in the xy plane, and
My = Nx throughout R, then Mdx + Ndy is exact on R. A rectangle is an example of what
mathematicians call a simply connected region: a region with “no holes”. (The intuitive notion
of “no holes” can be given a precise definition, but not in MAP 2302.) It can be shown that on
any simply connected region R, not just rectangles, if M and N are continuously differentiable,
then Mdx+Ndy is exact on R if and only if My = Nx throughout R.

If R is not simply connected, then “My = Nx” is still a necessary condition for exactness
on R, but not a sufficient condition: there are always differentials that satisfy My = Nx, but
that are not exact. You will construct an example in this exercise. The non-simply-connected
region we will use is

R = {(x, y) ∈ R2 : (x, y) ̸= (0, 0)}, (3)

i.e. R2 with the origin removed. This region has a “hole” at the origin. On R, define

M(x, y) =
−y

x2 + y2
, N(x, y) =

x

x2 + y2
. (4)

For the rest of this exercise, “R” always means the region in (3), and “M” and “N” always
mean the functions in (4).

(a) Show thatM and N are continuously differentiable on R and that My = Nx throughout
R.

(b) Show that on the set {(x, y) ∈ R2 : x and y are both nonzero} (i.e. R2 with the
coordinate axes removed),

M(x, y)dx+N(x, y)dy = d(arctan(
y

x
)) = d(− arctan(

x

y
)).
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(c) Define four functions as follows, with the indicated domains.

Fright(x, y) = arctan(
y

x
), x > 0.

Fupper(x, y) = − arctan(
x

y
) +

π

2
, y > 0.

Fleft(x, y) = arctan(
y

x
) + π, x < 0.

Flower(x, y) = − arctan(
x

y
) +

3π

2
, y < 0.

Show that the following four identities hold:

Fupper(x, y) = Fright(x, y) throughout open quadrant I.

Fleft(x, y) = Fupper(x, y) throughout open quadrant II.

Flower(x, y) = Fleft(x, y) throughout open quadrant III.

Fright(x, y) = Flower(x, y) + 2π throughout open quadrant IV.

Quadrants I–IV are the usual quadrants of the xy plane, and “open quadrant” means “quadrant
with the coordinate axes removed”.

(d) Use the result of exercise 9 (of these non-book problems) to show the following:

� Fupper is the only continuously differentiable function defined on the entire open upper
half-plane {(x, y) ∈ R2 : y > 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fright on open quadrant I.

� Fleft is the only continuously differentiable function defined on the entire open left half-
plane {(x, y) ∈ R2 : x < 0} whose differential is M dx+N dy on this half-plane and that
coincides with Fupper on open quadrant II.

� Flower is the only continuously differentiable function defined on the entire open lower
half-plane {(x, y) ∈ R2 : y < 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fleft on open quadrant III.

(e) Show that because the identities in part (c) hold, the following definition of a function
F on the domain

{(x, y) ∈ R2 : (x, y) ̸= (a, 0) for any a ≥ 0} (5)

(i.e. R2 with the origin and positive x-axis removed) is unambiguous, even though within each
open quadrant the definition gives two different formulas for F :
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F (x, y) = Fright(x, y) in open quadrant I.

F (x, y) = Fupper(x, y) if y > 0, i.e. for (x, y) in the open upper half-plane.

F (x, y) = Fleft(x, y) if x < 0, i.e. for (x, y) in the open left half-plane.

F (x, y) = Flower(x, y) if y < 0, i.e. for (x, y) in the open lower half-plane.

F (x, y) = Fright(x, y) + 2π in open quadrant IV.

This function has a simple geometric interpretation: F (x, y) is the polar coordinate
θ ∈ (0, 2π) of the point (x, y).

(f) Use part (d) to show that F is the only differentiable function defined on the domain
(5) whose differential is M dx + N dy on this domain and that coincides with Fright on open
quadrant I.

(g) Show that for all x0 > 0, limy→0+ F (x0, y) = 0, while limy→0− F (x0, y) = 2π.

(h) Use part (g) to show that there is no continuous function defined on the whole domain
R (see (3)) that coincides with F on the domain (5). Then, combine this fact with part (f) to
show that there is no continuously differentiable function on R whose differential is M dx+N dy
on this domain and that coincides with Fupper on open quadrant I.

(i) Use exercise 9 to show that if G is any continuously differentiable function defined on
open quadrant I for which dG = Mdx +Ndy, then, on open quadrant I, G differs from Fupper

only by an additive constant.

(j) Use parts (h) and (i) to show that there is no differentiable function H defined on all
of R for which dH = Mdx + Ndy. Thus, Mdx + Ndy is not exact on R, despite satisfying
My = Nx at every point of R.

Fact: It is accepted practice to write “dθ” for the differential −y
x2+y2

dx+ x
x2+y2

dy on R, even
though there is no differentiable function θ defined on all of R whose differential is dθ!

12. Show by induction on k that if an operator L is linear, then for all k ≥ 1, all constants
c1, c2, . . . , ck, and all functions f1, f2, . . . fk in the set of functions f for which L[f ] is defined,

L[c1f1 + c2f2 + · · ·+ ckfk] = c1L[f1] + c2L[f2] + · · ·+ ckL[fk].

(Several weeks ago, I sketched the argument in class. I want you to go through it again on your
own.)

13. Solving a Cauchy-Euler (“Co-she Oiler”) equation on the domain-interval (0,∞) gives us a
way to solve it on the domain-interval (−∞, 0) as well. Below, you will see how. some examples.
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(a) Fix numbers a, b, c (with a ̸= 0) and consider the second-order homogeneous Cauchy-
Euler equation

at2
d2y

dt2
+ bt

dy

dt
+ cy = 0. (6)

Using the Chain Rule and the substitution t = −u, show that (6) for t < 0 is equivalent
to the equation

au2 d
2z

du2
+ bu

dz

du
+ cz = 0 (7)

for u > 0, where z(u) = y(t) = z(−t). Except for the names of the variables, equations (6) and
(7) are the same. Use this to show that if t 7→ ϕ(t) is a solution of at2y′′ + bty′ + cy = 0 on
the interval {t > 0}, then t 7→ ϕ(−t) is a solution of the same DE on the interval {t < 0}, and
vice-versa. (See this footnote1 for the meaning of “7→”.) Thus show that if t 7→ ygen(t) is the
general solution of (6) on the interval {t > 0}, then t 7→ ygen(|t|) is the general solution of (6)
on the interval {t < 0}, as well as on the interval {t > 0}.

(b) Find the general solution t 7→ y(t) of

6t2y′′ + ty′ + y = 0 (8)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (8) on the
interval {t < 0}.

(c) Find the general solution t 7→ y(t) of

t2y′′ + 5ty′ + 4y = 0 (9)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (9) on the
interval {t < 0}. (Remember that, in all these problems, since the DE names t as its independent
variable, your answer must be expressed purely in terms of t, not wholly or partly in terms of
any other variable you used along the way.)

(d) Find the general solution t 7→ y(t) of

t2y′′ + 2ty′ + y = 0 (10)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (10) on the
interval {t < 0}.

1Recall that symbol “ 7→” is read “goes to” or (in more advanced classes) “maps to”. It is simply a way of
giving a name, possibly temporarily, to the domain-variable of a function, without having to name the function.
For example, “t 7→ ϕ(−t)” is a compact way of writing “the function ψ defined by ψ(t) = ϕ(−t)”.
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