
Non-book problems

1. Verify that for any nonzero constant b, the function f(x) = 1
b
cosh(bx) satisfies the differential

equation

d2y

dx2
− b

√
1 +

(
dy

dx

)2

= 0.

(Recall that the function “cosh” is defined by cosh(x) = 1
2
(ex + e−x).)

2. Solve the following differential equations.

(a) du
dt

+ 2
t
u = et, t < 0.

(b) dy
dx

− (tanx)y = secx lnx, 0 < x < π/2.

(c) x2 dy
dx

− 3xy = x6 arctanx.

3. Solve the equation

dy

dx
=

x sinx

ln y
.

4. Solve the equation

dy

dx
=

arctanx

ye2y
.

5. Solve the equation dy
dx

= xy2(1− y2).

6. Let p be a function that is continuously differentiable (i.e., for which p′ exists and is contin-
uous) on the the whole real line, and consider the separable differential equation

dy

dx
= p(y). (1)

(Above, the “g(x)” that you’re used to seeing on the right-hand side of a separable equation
is just the constant function 1. Below, the hypotheses on the function p matter only for parts
(b) and (c), not for part (a).

(a) Show that the family of all solutions of (1) is translation-invariant in the following sense:
if y = ϕ(x) is a solution on an interval a < x < b, and k is any constant, then y = ϕ(x− k) is
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a solution on the interval a + k < x < b + k. (Said another way: horizontally translating the
graph of a solution by any amount, you get the graph of another solution.)

(b) Using the Fundamental Theorem of Ordinary Differential Equations (in the section of
the handout “Some notes on first-order ODEs” that bears this name) show that for every point
(x0, y0) ∈ R2, the initial-value problem

dy

dx
= p(y), y(x0) = y0, (2)

has a unique solution on every sufficiently small open interval containing x0.

(c) Assume that there are numbers c < d such that p(c) = p(d) = 0. Use the “Uniqueness”
part of the FTODE to show all of the following. (Once you see how to do any one of these, the
other two should be easy.)

� (i) If y0 > d, and ϕ is a solution of (2) defined on an open interval Ix0 containing x0, then
ϕ(x) > d for all x ∈ Ix0 . (Note: you are not allowed to assume that Ix0 is a small interval;
you have to show that what’s being stated above is true no matter how large Ix0 is. The
interval Ix0 could even be the whole real line.)

� (ii) If y0 < c, then the solution ϕ of (2) satisfies ϕ(x) < c for all x ∈ Ix0 . (Same note as
above applies.)

� (iii) If c < y0 < d, then the solution ϕ of (2) satisfies c < ϕ(x) < d for all x ∈ Ix0 . (Same
note as above applies.)

7. Solve the equation
dy

dx
=

xy3√
1 + x2

with the initial condition y(0) = −1. What is the domain of the (maximal) solution?

8. For the differential equation dx
dt

= x2 − 4 (whose general solution was found in class [or
will be, by the time this problem is assigned], possibly with different names for the variables),
solve the initial-value problem with each of the following initial conditions: (a) x(0) = 2; (b)
x(0) = 1; (c) x(0) = −2; (d) x(0) = −3; (e) x(−1

2
ln 5) = 3. In each case, state the domain of

the (maximal) solution.

9. Show that if F1 and F2 are continuously differentiable functions on an open rectangle R in
the xy plane, and dF2 = dF1 throughout R, then F1 and F2 differ by a constant (i.e. there is a
constant C such that F2(x, y) = F1(x, y) + C for all (x, y) ∈ R).
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10. Solve the following differential equations and/or initial-value problems.

(a) (s+ 1)t ds− (s2 + 1)(t2 + 1)dt = 0.

(b) (u+ v2 − 4) dv
du

= 2u+ 1− v.

(c) (7θ + 6r)dθ + 12dr = 0.

(d) (2w − xex)dx+ x dw = 0.

(e) 6x− 1 + y + (x+ 3y2) dy
dx

= 0, y(1) = 2.

(f) x dx+ 4y3

x2+1
dy = 0.

11. Passing the “Exactness Test” not sufficient for exactness on domain with a
hole. As discussed in class and in the book, if M and N are continuously differentiable
(i.e. have continuous first partial derivatives) on an open rectangle R in the xy plane, and
My = Nx throughout R, then Mdx + Ndy is exact on R. A rectangle is an example of what
mathematicians call a simply connected region: a region with “no holes”. (The intuitive notion
of “no holes” can be given a precise definition, but not in MAP 2302.) It can be shown that on
any simply connected region R, not just rectangles, if M and N are continuously differentiable,
then Mdx+Ndy is exact on R if and only if My = Nx throughout R.

If R is not simply connected, then “My = Nx” is still a necessary condition for exactness
on R, but not a sufficient condition: there are always differentials that satisfy My = Nx, but
that are not exact. You will construct an example in this exercise. The non-simply-connected
region we will use is

R = {(x, y) ∈ R2 : (x, y) ̸= (0, 0)}, (3)

i.e. R2 with the origin removed. This region has a “hole” at the origin. On R, define

M(x, y) =
−y

x2 + y2
, N(x, y) =

x

x2 + y2
. (4)

For the rest of this exercise, “R” always means the region in (3), and “M” and “N” always
mean the functions in (4).

(a) Show thatM and N are continuously differentiable on R and that My = Nx throughout
R.

(b) Show that on the set {(x, y) ∈ R2 : x and y are both nonzero} (i.e. R2 with the
coordinate axes removed),

M(x, y)dx+N(x, y)dy = d(arctan(
y

x
)) = d(− arctan(

x

y
)).
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(c) Define four functions as follows, with the indicated domains.

Fright(x, y) = arctan(
y

x
), x > 0.

Fupper(x, y) = − arctan(
x

y
) +

π

2
, y > 0.

Fleft(x, y) = arctan(
y

x
) + π, x < 0.

Flower(x, y) = − arctan(
x

y
) +

3π

2
, y < 0.

Show that the following four identities hold:

Fupper(x, y) = Fright(x, y) throughout open quadrant I.

Fleft(x, y) = Fupper(x, y) throughout open quadrant II.

Flower(x, y) = Fleft(x, y) throughout open quadrant III.

Fright(x, y) = Flower(x, y)− 2π throughout open quadrant IV.

Quadrants I–IV are the usual quadrants of the xy plane, and “open quadrant” means “quadrant
with the coordinate axes removed”.

(d) Use the result of exercise 9 (of these non-book problems) to show the following:

� Fupper is the only continuously differentiable function defined on the entire open upper
half-plane {(x, y) ∈ R2 : y > 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fright on open quadrant I.

� Fleft is the only continuously differentiable function defined on the entire open left half-
plane {(x, y) ∈ R2 : x < 0} whose differential is M dx+N dy on this half-plane and that
coincides with Fupper on open quadrant II.

� Flower is the only continuously differentiable function defined on the entire open lower
half-plane {(x, y) ∈ R2 : y < 0} whose differential is M dx+N dy on this half-plane and
that coincides with Fleft on open quadrant III.

(e) Show that because the identities in part (c) hold, the following definition of a function
F on the domain

{(x, y) ∈ R2 : (x, y) ̸= (a, 0) for any a ≥ 0} (5)

(i.e. R2 with the origin and positive x-axis removed) is unambiguous, even though within each
open quadrant the definition gives two different formulas for F :

4



F (x, y) = Fright(x, y) in open quadrant I.

F (x, y) = Fupper(x, y) if y > 0, i.e. for (x, y) in the open upper half-plane.

F (x, y) = Fleft(x, y) if x < 0, i.e. for (x, y) in the open left half-plane.

F (x, y) = Flower(x, y) if y < 0, i.e. for (x, y) in the open lower half-plane.

F (x, y) = Fright(x, y) + 2π in open quadrant IV.

This function has a simple geometric interpretation: F (x, y) is the polar coordinate
θ ∈ (0, 2π) of the point (x, y).

(f) Use part (d) to show that F is the only differentiable function defined on the domain
(5) whose differential is M dx + N dy on this domain and that coincides with Fright on open
quadrant I.

(g) Show that for all x0 > 0, limy→0+ F (x0, y) = 0, while limy→0− F (x0, y) = 2π.

(h) Use part (g) to show that there is no continuous function defined on the whole domain
R (see (3)) that coincides with F on the domain (5). Then, combine this fact with part (f) to
show that there is no continuously differentiable function on R whose differential is M dx+N dy
on this domain and that coincides with Fupper on open quadrant I.

(i) Use exercise 9 to show that if G is any continuously differentiable function defined on
open quadrant I for which dG = Mdx +Ndy, then, on open quadrant I, G differs from Fupper

only by an additive constant.

(j) Use parts (h) and (i) to show that there is no differentiable function H defined on all
of R for which dH = Mdx + Ndy. Thus, Mdx + Ndy is not exact on R, despite satisfying
My = Nx at every point of R.

Fact: It is accepted practice to write “dθ” for the differential −y
x2+y2

dx+ x
x2+y2

dy on R, even
though there is no differentiable function θ defined on all of R whose differential is dθ!

12. Show by induction on k that if an operator L is linear, then for all k ≥ 1, all constants
c1, c2, . . . , ck, and all functions f1, f2, . . . fk in the set of functions f for which L[f ] is defined,

L[c1f1 + c2f2 + · · ·+ ckfk] = c1L[f1] + c2L[f2] + · · ·+ ckL[fk]. (6)

13. Below, I ⊂ R is a fixed but arbitrary interval, and “function” means “function on I” (as-
sumed differentiable as many times as necessary in each problem-part), “differential operator”
means “differential operator on I”, and “solution (of a DE)” means “solution on I (of that
DE)”.
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Let f1, . . . , fN and f be complex-valued functions. We say that f is a complex linear
combination of f1, . . . , fN if f = c1f1 + · · · + cNfN for some complex numbers c1, . . . , cN . We
say that the set {f1, . . . , fN} is linearly dependent over C (the complex numbers) if there exist
complex numbers c1, . . . , cN , not all 0, such that c1f1 + · · · + cNfN = 0; otherwise we say
{f1, . . . , fN} is linearly independent over C. (Thus, similarly to the real case, {f1, . . . , fN} is

linearly independent over C if and only if the only complex constants for which c1f1 + · · ·+ cNfN = 0

are c1 = c2 = · · · = cN = 0.) The same argument as for the real case shows that, if N > 1,
“{f1, . . . , fN} is linearly dependent over C” is equivalent to “at least one of the functions fj
is a complex linear combination of the others.” However, the “symmetric” definition of linear
independence (the one involving a linear combination of all N functions) is the most useful one
in this problem.

In the problem-parts below, parts (a)–(c) should be done in order (earlier parts are used
in later parts). Parts (d)–(g) should also be done in order, but do not rely on parts (a)–(c).
Parts (h)–(j) should also be done in order, but do not rely on parts (a)–(g). Part (k) should be
done last; it uses parts from each of the (a)–(c), (d)–(g), and (h)–(j) groupings.

(a) Let u and v be real-valued functions and let f = u+ iv. Observe that u and v can be
expressed in terms of f and f̄ :

u =
f + f̄

2
=

1

2
(f + f̄),

v =
f − f̄

2i
= −1

2
i(f − f̄).

Aided by these relations, show that

{c1u+ c2v : c1, c2 ∈ C} = {c1f + c2f̄ : c1, c2 ∈ C}. (7)

Note that this amounts to showing that (i) for all c1, c2 ∈ C, there are c3, c4 ∈ C such that
c1u+c2v = c3f+c4f̄ , and (ii) for all c3, c4 ∈ C there are c1, c2 ∈ C such that c3f+c4f̄ = c1u+c2v.
(In equaton (7), which relates two sets of functions, the constants c1 and c2 in each set of functions

were “dummy variables”, having no meaning outside the set-braces; we were free to use the same

notation “c1 and “c2” within the right-hand set as within the left-hand set. However, in an equation

between functions, such as “c1u + c2v = c3f + c4f̄ ”, each symbol has to have a consistent meaning;

we cannot relabel c3, c4 back to a new c1, c2.)

(b) Let u, v, and f be as in part (a). Show that the following are equivalent (i.e. each
implies the other two):

(i) The pair {u, v} is linearly independent (over R).

(ii) The pair {u, v} is linearly independent over C.

(iii) The pair {f, f̄} is linearly independent over C.
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(c) Let u, v, and f be as in part (a), and assume that the pair {u, v} is linearly independent.
By part (b), this assumption is equivalent to: the pair {f, f̄} is linearly independent over C.
The linear-independence assumption will be needed only for the “only if” parts of the “if and
only ifs” you’re asked to show below.

Clearly the set of real linear combinations of u and v is contained in set of complex linear
combinations of u and v. Hence, by part (a), {c1u+c2v : c1, c2 ∈ R} ⊂ {c1f+c2f̄ : c1, c2 ∈ C}.
A natural question is: which subset of the larger set is the smaller set? I.e., for which complex
pairs (c1, c2) is c1f + c2f̄ a real linear combination of u and v? Go through the following steps
to answer this question.

(i) Let c1, c2 ∈ C. Show that c1u+ c2v is a real-valued function if and only if c1 and c2 are
real. (Suggestion: use the fact that a complex number is real if and only if its imaginary
part is 0.)

(ii) Let c1, c2 ∈ C. Show that c1f + c2f̄ is a real-valued function if and only if c2 = c1.
(Suggestion: use the fact that a complex number z is real if and only if z = z̄.)

(iii) Combine (i), (ii) and part (a) to conclude that if c1f + c2f̄ is a real linear combination of
u and v (meaning: c1f + c2f̄ = c3u+ c4v for some c3, c4 ∈ R) if and only if c2 = c1.

Thus,
{c1u+ c2v : c1, c2 ∈ R} = {cf + c̄f̄ : c ∈ C}. (8)

Note the “conservation of parameters” in this equation: both sets are described in terms of
two real parameters; on the right-hand side these are the real and imaginary parts of c. In
passing from the description on the left to the description on the right, we have “traded” two
real parameters for one complex parameter.

(d) Previously, we defined an nth-order (real) linear differential operator L to be an operator
given by

L[y] = any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y, (9)

where the coefficients aj were real-valued functions (with an not identically zero) and the allowed
input-functions y were real-valued as well. We showed (weeks ago) that such an operator satisfies
the two criteria of (real) linearity: (i) L[f + g] = L[f ] + L[g] and (ii) L[cf ] = cL[f ] for all real-
valued functions f and g and all real constants c. In class, we checked recently that if n = 2,
and the coefficient functions aj in equation (9) are real constants, then the operator L in (9) is
complex-linear as well: properties (i) and (ii) hold for all complex-valued functions f and g and
all complex constants c. Check that, more generally, the operator L in (9) is complex-linear if
the aj are allowed to be complex-valued functions (not necessarily constant), and n is allowed
to be any positive integer.

We may call such an L a complex linear differential operator. Note that since all real
numbers are also complex numbers, all real-valued functions are also complex-valued, and all
real linear differential operators are also complex linear differential operators.
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(e) For real linear operators, we did non-book problem 12 in class (using only the defining
properties of [real] linearity, i.e. properties (i) and (ii) recalled in part (d)). Analogously, using
the defining properties of complex linearity, show that if L is a complex-linear operator, then
equation (6) holds for all complex-valued functions f1, . . . , fk and complex constants c1, . . . , ck.

(f) Assume that L is a real linear differential operator. Show that if f is a complex-valued
function, then

L[f̄ ] = L[f ];

equivalently,
Re(L[f ]) = L[Re(f)] and Im(L[f ]) = L[Im(f)], (10)

where Re(z) and Im(z) denote the real and imaginary parts, respectively, of a complex number z.
(In class we showed these facts only under the assumptions that L was second-order and had constant

coefficients. These simplifying assumptions were made just so that we’d have a very concrete, limited

class of differential operators in mind on a first run-through of certain material. However, you should

find that the general-case argument is no harder than the special-case argument given in class.)

(g) Show that if L is a real linear differential operator, and u and v are real-valued
functions, and f = u+ iv, then the following are equivalent (i.e. each implies the other two):

(i) L[f ] = 0.

(ii) L[u] = 0 = L[(v).

(iii) L[f̄ ] = 0.

(In class we showed this equivalence only under same simplifying assumptions as in part (f).)

(h) Consider a second-order, linear, homogeneous initial-value problem

(L[y] =) a2y
′′ + a1y

′ + a0 = 0, y(t0) = Y0, y′(t0) = Y1, (11)

where the coefficient functions aj are real and continuous, where a2 is nowhere zero, and where
t0 ∈ I. Recall that the “Fundamental Theorem of Linear ODEs” (a theorem whose truth we

are simply assuming in this course) assures us that for all real numbers Y0, Y1, equation (11) has
a unique solution on every subinterval of I containing t0 (and hence that the unique solution

on any proper subinterval J ⊊ I is the retriction to J of the solution on I). Show that the same
conclusion holds if Y0 and Y1 are arbitrary complex numbers, and we consider L as an operator
on complex-valued functions.

Suggestion: Consider two real IVPs, one in which the initial conditions are
y(t0) = Re(Y0), y′(t0) = Re(Y1), and one in which the initial conditions are y(t0) = Im(Y0),
y′(t0) = Im(Y1). Then apply part (f) (with its conclusion written in the form (10)).

Note that part (h) implies that the set of all complex-valued solutions of L[y] = 0 is the
same as the set of all solutions of all IVPs for L[y] = 0 with complex ICs based at any given t0
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(hence that the general complex-valued solution is the same as the set of all maximal-in-I solutions of

all IVPs for L[y] = 0 with complex initial conditions based at t0).

(i) Let L be as in part (h). Show that there is no complex solution y1 of L[y] = 0 for which
the general complex solution is {cy1 : c ∈ C}. (Suggestion: use part (h).)

(j) Let L and t0 be as in part (h). Recall that we defined a fundamental set of solutions
(FSS) of L[y] = 0 to be a list of solutions y1, . . . , yN such that every (real) solution of L[y] = 0
is a (real) linear combination of y1, . . . , yN (assuming that some such list exists, an assumption that

we verified later using the solutions y1, y2 defined below), and such that N is as small as possible
among all such lists of solutions. We define a fundamental set of complex solutions of L[y] = 0
(FSCS) analogously, simply by replacing “real” with “complex”.

In class we showed that the solutions y1, y2 of, respectively, the IVP

L[y] = 0, y(t0) = 1, y′(t0) = 0

and the IVP
L[y] = 0, y(t0) = 0, y′(t0) = 1

form a fundamental set of solutions for the (real) homogeneous DE L[y] = 0. Show that the same
set of functions {y1, y2} is also a fundamental set of complex solutions of L[y] = 0. (Suggestion:
to show that every complex solution can be written as a complex linear combination of y1 and
y2, use an argument similar to the one used in class for the real case. To show that there’s no
set of fewer than two complex solutions that generates the whole set of complex solutions, use
part (i).)

(k) Let L be as in part (h), and let y1 and y2 be real-valued functions and let f = y1+ iy2.
In view of part (j), any FSCS of L[y] = 0 has exactly two functions. Using this fact and earlier
parts of this problem, show that the following are equivalent:

(i) {y1, y2} is a (real) FSS of L[y] = 0.

(ii) {f, f̄} is a FSCS of L[y] = 0.

(iii) y1 and y2 are solutions of L[y] = 0 and {y1, y2} is linearly independent over R.

(iv) f is a solution of L[f ] = 0 and {f, f̄} is linearly independent over C.

(There are other equivalent statements that could be added to this list. I’ve confined the list to the

most useful equivalences.)

14. Setup. Let I ⊆ R. The notation C∞(I) denotes the space of infinitely differentiable (C∞),
real-valued functions on I.1

1(1) Recall that “infinitely differentiable” means that derivatives of all orders exist. For a C∞ function, the
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We are using infinitely differentiable functions just to simplify various statements below. In
particular, for a linear differential operator L on I, of any order, any f ∈ C∞(I) is automatically
in the domain of L (i.e. the function L[f ] is defined). Furthemore, if the coefficient functions
in L are constant, or more generally C∞, then the output L[f ] is C∞ as well.

Below, “operator” means a (not necessarily linear) differential operator L on I with the
property that whenever f is infinitely differentiable, so is L[f ]. (What we noted at the end of the
last paragraph is that any linear differential operator with C∞ coefficients has this property.)
All “input” functions f are assumed to lie in C∞(I) (except that for an exponential function
t 7→ ert, this is not an assumption, it’s a fact). The notation D operator (D[f ] = f ′), and for
any integer n > 1, the notation Dn is used for the nth-derivative operator. Thus, a general
nth-order linear differential operator L may be expressed as

L = anD
n + an−1D

n−1 + · · ·+ a1D + a0 , (12)

where the coefficient functions aj are C∞ (possibly constant) and the function an is not iden-
tically 0 on I.2

Part (a). For r ∈ R, let expr be the function t 7→ ert. Check that if the L in (12)
has constant coefficients, then for each r ∈ R,

L[expr] = p
L
(r) expr (13)

where p
L
(r) = anr

n+an−1r
n−1+ · · ·+a1r+a0, the characteristic polynomial of L in

the variable r. (Equation 13 is equivalent to: (L[expr])(t) = pL(r) expr(t) = pL(r)e
rt. In

the imprecise, “lazy” notation I use in class and that’s used in the book, this equation is

what I’ve been writing as L[ert] = pL(r)e
rt. You may continue to use the “lazy” version,

and I’ll continue using it in class; I just like to be more precise in my written documents.)

Thus any constant-coefficient linear differential operator can be reconstructed
from its characteristic polyomial: wherever we see r in the characteristic polynomial,
we just need to cross it out and replace it with D. Symbolically, we may express
this fact by the equation

L = p
L
(D). (14)

nth derviative is differentiable, hence is continuous; thus derivatives of all orders don’t merely exist, they’re
continuous (the reason for the “C” in “C∞”). (2) You may substitute the word “set” for “space”. Usually we
call C∞(I) a space of functions, rather than just a set of functions, because it has the following properties:

(i) Closure under addition: for any f, g ∈ C∞(I), the function f + g is also in C∞(I).

(ii) Closure under multiplication by constants (also called scalars): for any f ∈ C∞(I) and any constant c,
the function cf is also in C∞(I).

A set of real-valued functions with these two properties is automatically a vector space, which I’m not defining
here; I’m simply telling you the source of the word “space” in “space of infinitely differentiable, real-valued
functions on I.”

2Optionally, we can define the “zeroeth-derivative operator “D0” by D0[f ] = f,and define D1 = D. Then
the right-hand side of (12) can be written instead as anD

n + an−1D
n−1 + · · · + a1D

1 + a0D
0, This can serve

help as a reminder that in L[f ], the function a0 multiplies f .
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Note: The only differential operators L that have characteristic polynomials
are constant-coefficient linear differential operators. Characteristic polynomials are
functions of one variable, the “r” in expr or “t 7→ ert ”. The independent variable for functions
on which the operator L is acting—the “t” in “t 7→ f(t)”—does not appear in the characteristic
polynomial. This is crucial to the close relation between the algebra of polynomials and the
“algebra” of constant-coefficient linear differential operators, including relation (14).

Setup, continued. For operators L1, L2, define the operator L1L2 by

(L1L2)[f ] = L1[L2[f ]] for each f . (15)

(Thus the “product” of operators is actually a composition: the output of one operator, in this
case L2, is used as the input of the next, in this case L1.) Note that the parentheses around
L1L2 in (15) are used here just to group objects together, so that it is clear what operator is
operating on f.3 We will be using parentheses similarly for other, larger groupings later.

Part (b). Show that if operators L1 and L2 are linear, then so is L1L2.

(Do this using only the defining properties of linearity: L[f + g] = L[f ] + Lg and
L[cf ] = cL[f ] for all input-functions f, g and all constants c.)

Part (c). Show that (i) any two constant-coefficient linear differential operators
L1, L2 commute (i.e. L1L2 = L2L1, meaning (L1L2)[f ] = (L2L1)[f ] for all f), but
that (ii) non-constant linear differential operators L1, L2 need not commute.

Suggestion: For (i), first see why you can reduce the problem to showing that
aDn commutes with bDm for any n,m ≥ 0 and any constants a, b. For (ii), it suffices
to come up with one example of operators L1, L2, at least one of which does not have
constant coefficients, and a function f for which (L1L2)[f ] ̸= (L2L1)[f ]. Consider
L1 = D and L2 = “tD”, i.e. the operator for which (L2[f ])(t) = t

(
D[f ](t)

)
= tf ′(t).

Setup, continued. If L1, L2, L3 are differential operators on I, then equation (15) immediately
gives us definitions of L1(L2L3) and (L1L2)L3. (The parentheses are used here just to group
objects together. E.g. L2L3 is some operator L4, and L1(L2L3) means L1L4.)

Observe that composition of operators is associative:(
L1

(
L2L3

))
[f ] = L1

[(
L2L3

)
(f)

]
= L1

[
L2

[
L3[f ]

]]
while also

((
L1L2

)
L3

)
[f ] = (L1L2)

[
L3[f ]

]
= L1

[
L2

[
L3[f ]

]]
.

So we can simply write “L1L2L3” for the three-fold composition without fear of ambiguity.
More generally, for k operators L1, L2, . . . , Lk we define the k-fold composition L1L2 . . . Lk

analogously.

3The notation “L1L2[f ]” would be less clear: if L2[f ] = g, then “L1L2[f ]” looks like it means “L1g,” which
is notation we haven’t defined; we’ve only defined “L1[g].”
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Consistently with this notation, we also define “powers” of an operator: L2 = LL,
L3 = LLL, etc. Observe that this is consistent with our notation Dn = DD . . .D (with n
D’s) for the nth-derivative operator.

Part (d). Use equation (13), show that if L1 and L2 are constant-coefficient oper-
ators, then

pL1L2(r) = p
L1
(r)p

L2
(r). (16)

Extend your argument to show, more generally, that if L1, L2, . . . , Lk are constant-
coefficient differential operators, then

p
L1L2...Lk

(r) = p
L1
(r)p

L2
(r) . . . p

Lk
(r). (17)

Part (e). Deduce from part (d) that if L is a constant-coefficient differential oper-
ator, and

p
L
(r) = a(r − r1)(r − r2) . . . (r − rn) (18)

(where the roots r1, . . . , rn need not be distinct), then the operator L itself can be
“factored” correspondingly:

L = a(D − r1)(D − r2) . . . (D − rn). (19)

Part (f). Check that if, instead of considering only real-valued C∞ functions f , we

(i) consider C∞ complex-valued functions on I,

(ii) extend our definition of the functions expr to allow r to be complex, and

(iii) consider constant-coefficient linear differential operators with complex coeffi-
cients (recalling from problem 13 that these operators L are complex-linear),

then all the arguments you gave in parts (a)–(e) still work. (Don’t be lazy; actually
check these one at a time. You should be able to do this just by re-reading your
work; there should be little if anything that you need to (re)write.)

Thus, if L is a linear differential operator with complex constant coefficients, and
p
L
(r) can be factored over the complex numbers as a(r− r1)(r− r2) . . . (r− rn) then

it is still true that L = a(D − r1)(D − r2) . . . (D − rn). (Factoring over the complex

numbers means that we allow roots and factors to be complex.)

15. Solving a Cauchy-Euler (“Co-she Oiler”) equation on the domain-interval (0,∞) gives us
a way to solve it on the domain-interval (−∞, 0) as well. Below, you will see how.

(a) Fix numbers a, b, c (with a ̸= 0) and consider the second-order homogeneous Cauchy-
Euler equation

12



at2
d2y

dt2
+ bt

dy

dt
+ cy = 0. (20)

Using the Chain Rule and the substitution t = −u, show that (20) for t < 0 is equivalent
to the equation

au2 d
2z

du2
+ bu

dz

du
+ cz = 0 (21)

for u > 0, where z(u) = y(t) = z(−t). Except for the names of the variables, equations (20)
and (21) are the same. Use this to show that if t 7→ ϕ(t) is a solution of at2y′′ + bty′ + cy = 0
on the interval {t > 0}, then t 7→ ϕ(−t) is a solution of the same DE on the interval {t < 0},
and vice-versa. (See this footnote4 for the meaning of “ 7→”.) Thus show that if t 7→ ygen(t) is
the general solution of (20) on the interval {t > 0}, then t 7→ ygen(|t|) is the general solution of
(20) on the interval {t < 0}, as well as on the interval {t > 0}.

Note: We can use the same “t = −u” substitution to relate a non-homogeneous Cauchy-Euler
equation

at2
d2y

dt2
+ bt

dy

dt
+ cy = g(t) (22)

on the interval (−∞, 0) (assuming that the domain of g is at least that entire interval) to one on the
interval (0,∞) but we have to make the same subsitution on the right-hand side as well; in place of
equation (21) we obtain

au2
d2z

du2
+ bu

dz

du
+ cz = h, (23)

where h(u) = g(−u). Thus, if y is a solution of equation (22) on (0,∞), then the function t 7→ y(−t)
need not be a solution of (22) on (−∞, 0).

Hence the general solution of equation (22) on (−∞, 0) is (usually) not simply t 7→ ygen(|t|),
where ygen is the general solution of (22) on (0,∞). (However, if g happens to be an even function

on (−∞,∞), or on (∞, 0) ∪ (0,∞)—meaning, in either case, that g(t) = g(−t) for every nonzero

t ∈ R—then t 7→ ygen(|t|) is the general solution of (22) on (−∞, 0) as well as on (0,∞).)5

(b) Find the general solution t 7→ y(t) of

6t2y′′ + ty′ + y = 0 (24)

4Recall that symbol “ 7→” is read “goes to” or (in more advanced classes) “maps to”. It is simply a way of
giving a name, possibly temporarily, to the domain-variable of a function, without having to name the function.
For example, “t 7→ ϕ(−t)” is a compact way of writing “the function ψ defined by ψ(t) = ϕ(−t)”.

5More generally, the same principles and methods apply if the domain of the function g in (22) does not
contain all of (−∞, 0), but only a subset D ⊂ (−∞, 0) that is an interval or a union of disjoint intervals. In
that case, the function h is defined only on “−D” = {−t : t ∈ D} ⊂ (0,∞). A function g whose domain is not
the whole real line is even if, whenever g(t) is defined, so is g(−t), and g(−t) = g(t).

13



on the interval {t > 0}. Then, using part (a) above, find the general solution of (24) on the
interval {t < 0}.

(c) Find the general solution t 7→ y(t) of

t2y′′ + 5ty′ + 4y = 0 (25)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (25) on
the interval {t < 0}. (Remember that, in all these problems, since the DE names t as its
independent variable, your answer must be expressed purely in terms of t, not wholly or partly
in terms of any other variable you used along the way.)

(d) Find the general solution t 7→ y(t) of

t2y′′ + 2ty′ + y = 0 (26)

on the interval {t > 0}. Then, using part (a) above, find the general solution of (26) on the
interval {t < 0}.

(e) In part (a) we saw that the general solution of equation (20) on (−∞, 0) could be
obtained from the general solution on (0,∞) simply by replacing t by −t. Is the same
true for IVP’s? For example, if y1 is the solution of the DE (20) with initial conditions
y(7) = 3, y′(7) = 4, then is t 7→ y1(−t) := ỹ1(t) the solution of the IVP for the DE (20)
with initial conditions y(−7) = 3, y(−7) = 4? If not, of what IVP with initial conditions at
−7 is ỹ1 the solution?
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