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Direct Sum of Two Vector Spaces or Subspaces

There are two closely related, but not identical, notions of something called a
direct sum in linear algebra. For one of these, we start with two vector spaces V
and W, and construct a third vector space called the direct sum of V and W . In
the other, we are given a vector space Z. and two subspaces V and W of Z. If these
subspaces satisfy certain conditions, we say that Z is the direct sum of V and W.
In these notes, we’ll call the first notion the “external” direct sum of V and W , and
denote it V ⊕e W ; we’ll call the second notion the “internal” direct sum of V and W,
and denote it V ⊕i W . But conventionally, both are denoted simply V ⊕W ; context
tells you which notion is meant.

Below, we discuss both these notions, and how they are related.

“External” direct sum

Let V and W be vector spaces. On the Cartesian product V × W :=
{(v, w) : v ∈ V,w ∈ W}, we define operations “plus” and “sm” (scalar1 multipli-
cation), and the customary notation for them, as follows:

plus : (V ×W )× (V ×W ) → V ×W

is defined by

(v1, w1) + (v2, w2) := plus
(

(v1, w1), (v2, w2)
)

:= (v1 + v2, w1 + w2); (1)

scalar multiplication is defined by

c(v, w) := sm
(
c, (v, w)

)
:= (cv, cw). (2)

(Remember: “A:=B” means that we are defining A to be B.)

In a homework exercise2 you showed that V ×W , equipped with the operations
above, is a vector space; the zero element is (0V , 0W ). This vector space is defined
to be the “external” direct sum of V and W , for which we are using the notation
V ⊕e W in these notes.

Remark: In equation (1) there are three distinct operations denoted “+”. As a general
rule, it is a bad idea to use the same symbol with more than one meaning in a single

1In these notes, “vector space” means real vector space; the field of scalars is R. However,
everything in these notes applies to vector spaces over any field F; just replace R by F wherever R
occurs.

2Friedberg, Insel, and Spence, 5th edition, exercise 1.2/ 21
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equation. However, if we try to use notation such as +V ⊕eW
, +V , and +W , in order to

distinguish the three “+” operations from each other, the equation can be much harder to
read, even if we omit the middle portion of equation (1):

(v1, w1) +V ⊕eW
(v2, w2) := (v1 +V v2, w1 +W w2). (3)

Equation (2) has a similar issue—there are three distinct scalar-multiplication operations
denoted simply by the juxtaposition of a scalar and a vector—but trying to solve this
problem leads either to introducting some symbol for scalar multiplication (for which both
“·” and “×” could be confusing), which we would then modify with a subscript as in (3),
or to replacing (2) with the opaque, make-the-reader’s-eyes-glaze-over, intuition-destroying
equation

smV ⊕eW

(
c, (v, w)) :=

(
smV (c, v), smW (c, w)

)
.

In this instance, most mathematicians deem the cure to be worse than the disease,
and tolerate the“abuse of notation” in equations (1) and (2) as the least of the evils.

Exercise DS1. Compare the vector spaces R ⊕e R and R2 (where the
latter is equipped with its standard vector-space structure).

“Internal” direct sum

Let Z be a vector space and let V ′ and W ′ be subspaces of Z. Then the subspace
sum V ′ + W ′ is also a subspace of Z, as shown in another homework exercise (Fried-
berg, Insel, and Spence, 5th edition, exercise 1.3/ 23). Two conditions on V ′ and W ′,
each of which can (in general) be satisfied or failed independently of the other, are
(i) V ′ + W ′ = Z and (ii) V ′ ∩W ′ = 0Z .

If both (i) and (ii) are satisfied, we say that W ′ is a complement3 of V ′ (in Z), or
that V ′ is a complement of W ′, or that V ′ and W ′ are complements or complementary
subspaces.4 In this case we also say that Z is the “internal” direct sum of V ′ and W ′,
for which we are using the notation V ′ ⊕i W

′ in these notes.

The next exercise shows that every external direct sum can be expressed as an
internal direct sum, and vice-versa.

Exercise DS2. Let V and W be vector spaces. Define subsets V ′,W ′ of
V ×W by V ′ = V × {0W} = {(v, 0W ) : v ∈ V } and W ′ = {0V } ×W =
{(0V , w) : w ∈ W}.

(a) Show that V ′ and W ′ are subspaces of V ⊕e W .

3This linear-algebraic meaning of complement is very different from the set-theoretic meaning.
4Orthographic note: “compliment” does not mean the same thing as “complement”. The words

“compliment” and “complimentary” have no mathematical meaning.
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(b) Show that these two subspaces of V ⊕e W are complements of each
other, and hence that V ⊕e W = V ′ ⊕i W

′.

Later in the semester, when we define what it means for two vector spaces to be
isomorphic, we will revisit the exercise above (perhaps just in homework) and see
the subspaces V ′ and W ′ are isomorphic to the vector spaces V and W , respectively.
This strengthens the tie between external and internal direct sums, showing them to
be “almost the same thing” viewed two different ways.

Although the two types of direct sum are almost the same, they are not quite the
same, for the following reason. If V ′ and W ′ are complementary subspaces of a vector
space Z ′, then Z ′ = V ′ ⊕i W

′ = W ′ ⊕i V
′. However, if V and W are two vector

spaces and V 6= W , then V ⊕e W is not literally the same vector space as W ⊕e V ;
for the first of these, the set of elements of the direct sum is V × W , whereas for
the other the set of elements is W × V . Of course, there is a natural bijection from
V ×W to W × V that sends (v, w) to (w, v), so any statement we can make about
V ⊕e W can be translated into an equivalent statement about W ⊕e V . (When we
revisit direct sums after we define isomorphism, we’ll see that this “swapping” map
is an isomorphism, and hence that V ⊕W and W ⊕ V are isomorphic.)

Proposition DS1 (“unique decomposition” property of direct sums). Let
V ′ and W ′ be complementary subspaces of a vector space Z. Then for every z ∈ Z,
there exist unique vectors v ∈ V ′ and w ∈ W ′ such that z = v + w.

(In other words, every z ∈ Z can be uniquely expressed as an element of V ′ plus an

element of W ′.)

Exercise DS3. Prove Proposition DS1.
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