Non-book problems for Assignment 11

[Assorted problems that I considered putting on the Nov. 8 exam. Some are answered in book.]

NB 11.1. Let $n \ge 1$ and let $B, C \in M_{n \times n}(\mathbf{R})$. Define functions $\tilde{L}_B, R_C : M_{n \times n}(\mathbf{R}) \to M_{n \times n}(\mathbf{R})$ by $\tilde{L}_B(A) = BA$ and $R_C(A) = AC$. (I'm using the notation " \tilde{L}_B " rather than " L_B " since we've been using the latter for a specific map from \mathbf{R}^n to \mathbf{R} .)

- (a) Show that \tilde{L}_B and R_C are linear.
- (b) Show that $\tilde{L}_B \circ R_C = R_C \circ \tilde{L}_B$.

(c) Let β be a basis of $M_{n \times n}(\mathbf{R})$. What size are the matrices $[\tilde{L}_B]_{\beta}$ and $[R_C]_{\beta}$? (I.e., what are the numbers r and s for which these matrices are $r \times s$ matrices?)

(d) Is it always true that BC = CB? If yes, prove it; if not, give a counterexample with n = 2.

(e) Is it always true that $[\tilde{L}_B]_{\beta} [R_C]_{\beta} = [R_C]_{\beta} [\tilde{L}_B]_{\beta}$? (You should be able to deduce the answer from earlier part(s) of this problem.) If yes, prove it; if not, give a counterexample with n = 2.

NB 11.2. Let V be a finite-dimensional vector space and let $T : V \to V$ be linear. Show that if $T^2 = T$, then (a) $V = N(T) \oplus R(T)$, and (b) T is the projection on R(T) along N(T).

Suggestion for part (a): Use the fact that v = (v - T(v)) + T(v) (for every $v \in V$).

NB 11.3. [Check whether this is in book.]

Let $V = P_2(\mathbf{R})$ (the space of polynomials of degree at most 2).

- (a) Define $L: V \to V$ by L(f)(x) = f(x-1). Show that L is linear.
- (b) Find the matrix of L with respect to the standard ordered basis $\{1, x, x^2\}$ of V.

NB 11.4. Show that the inverse of an invertible LT is linear.

NB 11.5. Give an example of two distinct infinite-dimensional vector spaces V, W that are isomorphic to each other. Also, give an explicitly defined map $T : V \to W$ that is an isomorphism. (You're not being asked to *prove* that your map T is an isomorphism, or that it has any of the properties an isomorphism must have. You're just being asked to write down a map $T : V \to W$ that, indeed, is an isomorphism.)

(? points) [S92 final] Let V be the space of symmetric 2x2 matrices and W the space of antisymmetric 3x3 matrices. (Recall that a matrix is *symmetric* if it is equal to its transpose, and *antisymmetric* if it is equal to minus its transpose.) Find an

isomorphism from V to W. (You may find it useful to write down what general elements of V and W look like.)

NB 11.6. Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation whose matrix in the standard ordered basis β is $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$. Let γ be the ordered basis $\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \}$.

(a) Find the matrix B that changes γ -coordinates to β -coordinates.

(b) Find the matrix C that changes β -coordinates to γ -coordinates.

(c) DO NOT DO ANY COMPUTATION IN THIS PART. In terms of A, B and C, find the matrix of T in the ordered basis γ . (I.e. write down the matrix product that you would have to compute to get the numerical entries of $[T]_{\gamma}$, but DO NOT perform the matrix multiplication.)

NB 11.7. Suppose A is an $M \times M$ matrix for which $A^n = 0$ for some n > 1. Show that

$$I + A + A^{2} + \dots + A^{n-1} = (I - A)^{-1}.$$