
Non-book problems for Assignment 14

NB 14.1. Let A ∈ M2×2(R) and let fA(t) = det(A−tI), the characteristic polynomial
of A with the variable named t. Show that

fA(t) = t2 − tr(A)t+ det(A). (1)

(Note: The simplicity of equation (1) is special to 2× 2 matrices. In the next exercise, you

will figure out what (1) generalizes to when n > 2.

NB 14.2. Let k, n be integers with 1 ≤ k ≤ n. The kth elementary symmetric
function σk of variables x1, x2, . . . , xn is defined by

σk(x1, . . . , xn) =
∑

i1<i2<···<ik

xi1xi2 . . . xik .

(The sum is over all ordered k-tuples of integers (i1, i2, . . . , in) satisfying
1 ≤ i1 < i2 < · · · < ik ≤ n.) For example, with n = 3,

σ1(x1, x2, x3) = x1 + x2 + x3 ,

σ2(x1, x2, x3) = x1x2 + x1x3 + x2x3 , and

σ3(x1, x2, x3) = x1x2x3 .

(The Greek letter σ is a lower-case sigma.)

(a) Let λ1, λ2, . . . , λn ∈ R and let D be the n × n diagonal matrix with
Dii = λi, 1 ≤ i ≤ n. Show that fD, the characteristic polynomial of D, satisfies

(−1)nfD(t) = (t− λ1)(t− λ2) . . . (t− λn)

= tn − σ1(λ1, . . . , λn ) t
n−1 + σ2(λ1, . . . , λn) t

n−2

− . . . + (−1)nσn(λ1, λ2, . . . , λn). (2)

(b) Using part (a), show that if A is a diagonalizable n×n matrix with eigenvalues
λ1, λ2, . . . , λn (not necessarily distinct; an eigenvalue of algebraic multiplicity m appears

m times in this list) then the characteristic polynomial fA(t) is also given by the right-
hand side of equation (2). In particular,

det(A) = det(A− tI)|t=0 = fA(0)

= constant term in fA(t)

= σn(λ1, λ2, . . . , λn)

= λ1λ2 . . . , λn .

Thus the determinant of A is the product of its eigenvalues (counted with multiplic-
ity):

det(A) = λ1λ2 . . . λn . (3)

Furthermore, the coefficient of tn−1 in fA(t) is always (−1)n−1tr(A).
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NB 14.3 (Explicit formula for the Fibonacci numbers, via “eigenstuff”)
The Fibonacci numbers are the terms of the sequence

1, 1, 2, 3, 5, 8, 13, . . . , (4)

in which the first two terms are 1, and every term after that is the sum of the two
previous terms. In this problem you will use matrix algebra (specifically, “eigenstuff”)
to compute an explicit formula for the Fibonacci numbers and some related sequences.

For n ≥ 1 let fn be the nth term of the Fibonacci sequence (4). Thus f1 = f2 = 1
and fn+2 = fn+1 + fn for n ≥ 1. To simplify some formulas below, define f0 = 0
(effectively, just inserting a 0 at the start of the sequence (4)), and observe that
f2 = f1 + f0, so that the recursive relation fn+2 = fn+1 + fn now holds for n ≥ 0.

Define a sequence of vectors x0,x1,x2, . . . in R2 by

xn =

(
fn
fn+1

)
. (5)

(a) Show that this sequence of vectors (xn)
∞
n=0 satisfies

xn+1 = Axn for all n ≥ 0, (6)

where

A =

(
0 1
1 1

)
. (7)

Then use (6) to deduce that

xn = Anx0, for all n ≥ 1. (8)

(b) (i) Find the eigenvalues of A. You should find that these are two distinct, real
numbers λ1 and λ2.

By problem NB 14.1, λ1λ2 = det(A) = −1 , so |λ1| |λ2| = 1. From your formula
for the eigenvalues, you should easily (without a calculator) be able to see that one
of the eigenvalues has absolute value greater than 1, so the other must have absolute
value less than 1 (which can also be seen easily, but slightly less easily). Let λ1 be
the eigenvalue with |λ1| > 1 and let λ2 be the other eigenvalue. Below, let D be the

diagonal matrix

(
λ1 0
0 λ2

)
.

(ii) Find eigenvectors v1,v2 corresponding to λ1, λ2 respectively. Since λ1 ̸= λ2,
the set {v1,v2} is linearly independent set in the two-dimensional vector space R2,
hence is a basis of R2 (an A-eigenbasis).
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(c) Express the vector x0 =

(
0
1

)
in terms of v1 and v2. I.e. find c1, c2 ∈ R such

that x0 = c1v1 + c2v2. Then show that

Anx0 = c1 λ1
n v1 + c2 λ2

n v2 , (9)

and use equation (9) (together with equation (8) and the definition of xn) to write
down an explicit formula for the nth Fibonacci number fn.

If you’ve done everything correctly, in your formula for fn you’ll see the irrational
number

√
5 appearing in two fractions that are raised to higher and higher powers.

Yet the Fibonacci numbers are integers! Remarkably, not only do all the
√
5’s cancel,

allowing your formula to work out to a rational number for each n, the fractions
“conspire” with each other to produce an integer.

(d) For each n ≥ 1, compute Dn explicitly in terms of the eigenvalues of D. (Recall
that for a diagonal matrix, the eigenvalues are precisely the diagonal entries.) Relate
this to FIS exercise 5.1/16b.

(e) Use the information found in part (b) to construct an invertible matrix
C ∈ M2×2(R) such that D = C−1AC.

Since D = C−1AC, we also have A = CDC−1 (why?). From non-book problem
NB 11.3, we then have

An = CDnC−1 for any n ≥ 1. (10)

Since xn = Anx0, we now have two more ways of computing xn:

(i) Compute An explicitly, and then multiply x0 by the result.

(ii) Use the associativity of matrix multiplication to compute Anx0 = CDnC−1x0

without ever computing An itself, by doing the matrix computation in “right-to-left”
order (as indicated by the parentheses below):

C
( compute second︷ ︸︸ ︷
Dn( C−1x0︸ ︷︷ ︸

compute first

))

︸ ︷︷ ︸
compute third

. (11)

Note that methods (i), (ii), and the method in part (c) should all give
the same answer! After you’ve done the computation all three ways, compare the
methods and see how and where the same information is packaged differently.

(f) (i) Compute limn→∞
fn+1

fn
and relate the answer to eigenvalue(s) of A (equivalently,

eigenvalues of D). Then look back at equation (9) and see how you could have
predicted the value of this limit.
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(ii) Consider a modified Fibonacci sequence (an)
∞
n=0 in which the first two terms

are replaced by arbitrary numbers a0 and a1, not both 0, but the recursive rule
an = an−1 + an−2 is still used for n ≥ 2. Using (9), show that limn→∞

an+1

an
always

exists, and is “almost” independent of the initial terms a0 and a1, in the following
sense: the limit always exists, and is always either λ1 or λ2, but is λ1 unless the vector(

a0
a1

)
lies in the λ2-eigenspace of A. (So, if you threw a dart at the xy plane to

select the vector

(
a0
a1

)
, the above limit would virtually always be λ1; the chance of

your hitting the line that represents the λ2-eigenspace would be virtually zero.)

NB 14.4 In the setting of non-book problem NB 12.1, a function f : V × V → W is
called symmetric if f(v, w) = f(w, v) (no sign-change).

For any vector spaces V and W , the concepts of bilinearity and symmetry of a
function f : V × V → W make sense. A concept that makes sense only for the
case W = R (regardless of V ) is positive-definiteness: a symmetric, bilinear function
f : V × V → R is called positive-definite if f(v, v) > 0 for all v ̸= 0V .

Show that a function f : V × V → R is an inner product on V if and only if f is
symmetric, bilinear, and positive-definite.

(As seen in the definition on pp. 327–328 of FIS, for such a function, it is common to

use notation such as “⟨v, w⟩” for the output of such a function when the inputs are v and

w, rather than to require choosing a name, e.g. f , for the function, and writing “f(v, w)”

for the output.)

FYI: A common definition of “ inner product” on a real vector space V is
“symmetric, bilinear, positive-definite function from V × V to R.” When
we want to define inner products for complex vector spaces, as in FIS, we
cannot avail ourselves of this simple wording.

NB 14.5 Let V,W be vector spaces, let ⟨·, ·⟩ be an inner product on W , and let
T : V → W be a linear trasnformation. Define a function ⟨·, ·⟩′ : V × V → R by

⟨v1, v2⟩′ = ⟨T (v1), T (v2) ⟩.

Show that ⟨·, ·⟩′ is an inner product on V if and only if T is one-to-one.

(When working this out, you should find that “one-to-one-ness” is relevant to only one

of the criteria in the definition of “inner product”.)

NB 14.6 Let m,n ≥ 1, let ⟨·, ·⟩ and ⟨·, ·⟩′ be the standard inner products on Rm and

Rn respectively, and let A ∈ Mm×n(R). Let a⃗ =

 a1
...
am

 ∈ Rm, b⃗ =

 b1
...
bn

 ∈ Rn.
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Show that
⟨⃗a, A⃗b⟩ =

∑
i,j

aiAijbj = a⃗ tA b⃗ = ⟨Ata⃗, b⃗⟩′. (12)

(Here “
∑

i,j” is short-hand for the double-sum “
∑m

i=1

∑n
j=1”, and we are treating a

1 × 1 matrix as a real number [the matrix’s sole entry]; the 1 × 1 matrix a⃗ tA b⃗ is a

product of the three matrices a⃗ t ∈ M1×m(R), A ∈ Mm×n(R), and b⃗ ∈ Mn×1(R).)
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