
Non-book problems for Assignment 9

NB 9.1. Let V,W,Z be vector spaces, with V and W finite-dimensional. Let
T : V → W and S : W → Z be linear transformations. Show that

rank(S ◦ T ) ≤ min{rank(S), rank(T )}.

Before starting, prove the following trivial lemma for yourself: for any real numbers

x, y, z, the inequality “x ≤ min{y, z}” is equivalent to “x ≤ y and x ≤ z.” After proving

this lemma for yourself, don’t bother citing it when you use it. Thus, for example, to

show rank(S ◦ T ) ≤ min{rank(S), rank(T )} in the exercise above, you should show that

rank(S ◦ T ) ≤ rank(S) and that rank(S ◦ T ) ≤ rank(T ), and then say something like

“Therefore rank(S ◦ T ) ≤ min{rank(S), rank(T )};” you should not break the argument

down into cases according to which of rank(S) and rank(T ) is the larger.

Something you may find helpful: for any vector spaces W̃ and Z̃, any subspace
X ⊆ W̃ , and any linear map S̃ : W̃ → Z̃, the restriction of S̃ to X—i.e. the map
S|X : X → Z̃ defined by S̃|X(x) = S̃(x) for all x ∈ X—is a linear map from X to Z̃
(why?).

NB 9.2. (We did some or all parts of this problem in class a few weeks ago, but I don’t

think I displayed the results in numbered proposition or corollaries. In this problem, do

any such proofs over again; don’t just say “This is true because we proved it in class.”)

Let V and W be finite-dimensional vector spaces, and let T : V → W be a linear
map.

(a) Show that
rank(T ) ≤ min{dim(V ), dim(W )}. (1)

(We actually showed this in class, briefly, a few weeks ago, but I don’t think I displayed it

as a numbered proposition or corollary. Although you could derive this from problem NB

9.1 by doing something clever, don’t try; it’s not worth the effort. The inequality (1) holds

for simpler reasons.)

(a) Show that T is one-to-one if and only if rank(T ) = dim(V ).

(b) Show that T is onto if and only if rank(T ) = dim(W ).

NB 9.3. Let V and W be finite-dimensional vector spaces and assume that
dim(V ) < dim(W ).

(a) Show that there exists a one-to-one linear transformation from V to W . (Hint:
Theorem 2.6 in FIS Chapter 2.)
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(b) Show that if T : V → W is a one-to-one linear transformation, then there
exists a linear transformation S : W → V such that S ◦ T = IV .

(c) Show that if S : W → V is a linear transformation that is onto, then there
exists a linear transformation T : V → W such that S ◦ T = IV . Show also that
any such T is one-to-one. (Note: The S and T in this problem-part are new; they’re
not carried over from part (b). In fact, the wording of part (b) tells you this.
How?)

(d) Give two proofs, as indicated below, that there do not exist any linear trans-
formations T : V → W and S : W → V for which T ◦ S = IW :

• Hint for Proof #1: Use Problem NB 9.1.

• Hint for Proof #2: Show that for any sets X, Y and functions f : X → Y and
g : Y → X, if g ◦ f = IX (the identity map of X), then f is one-to-one and
g is onto. Then use what we proved several weeks ago about non-existence of
certain linear maps from V to W , and certain linear maps from W to V , under
the given assumption that dim(V ) < dim(W ).

NB 9.4. Let V and W be finite-dimensional vector spaces of equal dimension n.
Suppose that T : V → W and S : W → V are linear transformations for which
S ◦ T = IV . Using the steps below, prove that T ◦ S = IW .

(a) Show that rank(S) = rank(T ) = n. (Hint: Problem NB 9.1.) In particular, T is
onto.

(b) Show that T ◦S ◦T = T. (Recall that composition of composable functions is asso-

ciative: if f : X → Y, g : Y → Z, and h : Z → W are functions, then

(h ◦ g) ◦ f = h ◦ (g ◦ f). Hence both sides of the latter equation can unambiguously

be denoted h ◦ g ◦ f.)

(c) Now use parts (a) and (b) to show that T ◦ S = IW .

Note: Problem NB 9.3(d) shows that in order for “S ◦ T = IV ” to imply
“T ◦S = IW” non-vacuously, the assumption that dim(V ) = dim(W ) is crucial
for ! (The “non-vacuously” means here that it’s possible for the condition “S ◦T = IV ” to

be met.)

NB 9.5. Let m,n be positive integers with n < m.

(a) Show that if A ∈ Mm×n(R) is such that the map LA : Rn → Rm has rank n,
then there exists a matrix B ∈Mn×m(R) such that BA = In×n.

(Hint: Use appropriate parts of Problem NB 9.2 and NB 9.3.)
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(b) Show that there are no matrices A ∈ Mm×n(R), B ∈ Mn×m(R) such that
AB = Im×m.

(Same hint.)

NB 9.6. Let A,B ∈Mn×n(R) and let I = In×n . Show that if AB = I, then BA = I.
(Hint: Problem NB 9.4.)

NB 9.7. Let m,n, p ∈ N.

(a) Let A ∈ Mm×n(R) and B ∈ Mn×m(R). Then both the products AB and BA
are defined, and both are square matrices (the first is m ×m; the second is n × n),
so the trace of each is defined. Show that

tr(AB) = tr(BA), (2)

whether or not m = n. (This generalizes the first part of FIS exercise 2.3/13, in which
you showed that equation (2) holds if both A and B are n× n.)

(b) Let A ∈Mm×n(R), B ∈Mn×p(R), and C ∈Mp×m(R). Check that each of the
products ABC, BCA, and CAB is defined and is a square matrix, and show that

tr(ABC) = tr(BCA) = tr(CAB). (3)

(Use the result of part (a) to do this very quickly; don’t give a lengthier version of
the argument you used for part (a).)

Observe that the permutations of “A,B,C” appearing in equation (4) are only the
cyclic permutations, not all permutations. Equation (4) (as well as its generalization
in part (c)), is often called the “cyclic property of the trace.”

(c) Formulate and prove a generalization of part (b) for arbitrarily many appropriately-
sized matrices.

NB 9.8. Let A and B be diagonal n× n matrices. Show that AB is also a diagonal
matrix, and that if the diagonal entries of A are λ1, . . . , λn and the diagonal entries
of B are µ1, . . . , µn (i.e. λi = Aii and µi = Bii, 1 ≤ i ≤ n), then the diagonal entries
of AB are simply the products λ1µ1, . . . , λnµn.

NB 9.9. (a) Let A =


0 1 2 3
0 0 4 5
0 0 0 6
0 0 0 0

. Compute A2, A3, and A4.

(b) In part (a), you should have found that A4 is a very simple matrix—so simple
that you can immediately tell what all higher powers of A would be. You should
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also have noticed a pattern in location of the nonzero above-diagonal entries in the
sequence A,A2, A3. Does the value of A4, or the pattern you noticed in the sequence
A,A2, A3, depend at all on the values of the above-diagonal entries of A?

(c) For n × n matrices with n ≥ 2, conjecture how your observations in part (b)
would generalize.

(d) Try to prove the conjecture you made in part (c).

NB 9.10. Let A,C ∈ Mn×n(R) and assume that C is invertible. Show that for any
integer k ≥ 1,

(C−1AC)k = C−1Ak C

and similarly
(CAC−1)k = C Ak C−1.

NB 9.11. Matrix model for the complex number system. If you need to review
complex numbers before doing this problem, see Appendix D in FIS.

(a) Check that C, the space of complex numbers, is a real vector space for which
{1, i} is a basis. (Hence the dimension of this real vector space is two.)

(b) In M2×2(R), let

I = I2×2 =

(
1 0
0 1

)
, J =

(
0 −1
1 0

)
,

and let H = span{I, J} ⊆ M2×2(R). Clearly {I, J} is a linearly independent set, so
H is a two-dimensional (real) vector space for which {I, J} is a basis.

Check that H is the space of real matrices of the form

(
a −b
b a

)
.

(c) Compute J2 and express your answer in terms of I.

(d) Show that H is closed under multiplication (of 2× 2 matrices). I.e. show that
if Z,W ∈ H, then ZW ∈ H.
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(e) Define φ : H → C to be the linear map for which φ(I) = 1 and φ(J) = i.
(Thus φ(aI + bJ) = a + bi for all a, b ∈ R.) Show φ is an isomorphism (of vector
spaces) and that, in addition,

φ(ZW ) = φ(Z)φ(W ) for all Z,W ∈ H. (4)

(The right-hand side of equation (4) is the product of the complex numbers φ(Z) and φ(W ).)

Thus φ : H → C is a bijective (i.e. one-to-one and onto) map that carries
matrix addition (of matrices in H) to addition of complex numbers, and carries matrix
multiplication (of matrices in H) to multipliication of complex numbers.

(f) In the usual introduction to complex numbers, we define the multiplication op-
eration by declaring the product (a + bi)(c + di) to be ac − bd + (ad + bc)i
(where a, b, c, d ∈ R). The question then arises: is this operation associative? To
verify that it is associative, we usually then take three arbitrary complex numbers,
say z1 = a+ bi, z2 = c+ di, z3 = e+ fi (where a, b, c, d, e, f ∈ R), compute (z1z2)z3
and z1(z2z3), and check that the results are equal. Give a different proof of the asso-
ciativity of complex multiplication, using the map φ and the associativity of matrix
multiplication.
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