
Lists and linear independence

Definitions of linear independence that apply only to sets of vectors make it harder
to state and/or prove some important linear-algebraic facts. In these notes we approach
linear independence in a more flexible way that does not have these deficiencies.

In these notes, “vector space” means “real vector space,” but everything we say
applies equally well to vector spaces over any field. We will often refer to real numbers
as scalars; if we were talking about vector spaces over a different field, “scalars” would
mean elements of that field.

Throughout these notes, V denotes a fixed but arbitrary vector space, “vector” means
“element of V ”, and 0V denotes the zero vector. An un-subscripted “0” means the scalar
0. We use the notation N for the set of natural numbers (positive integers).

Definition 1 Let X be a set. We will call a finite sequence x1, . . . , xn of elements of X a
list of elements of X, or a list in X, and call the positive integer n the length of this list.1

Given a list x1, . . . , xn, the object xi (1 ≤ i ≤ n) is called the ith term of the list, not the
ith element of the list. (The term xi is still called an element of the set X; we simply do not

call it an element of the given list.) An n-term list is a list of length n.

A list is a more general object than a finite, ordered, nonempty set. In a list x1, . . . , xn,
the terms xi need not be distinct (there can be “repeats”), something that the definition
of set does not allow. This is why we don’t call xi the ith element of the list; only sets
have elements.

Definition 2 Let L be a list v1, . . . , vn of vectors.

(a) A linear combination of L is a vector v ∈ V for which there exists an n-term list of
scalars c1, . . . , cn such that v = c1v1 + · · · + cnvn . (The sum in the last equation is
also denoted

∑n
i=1 civi.)

(b) The span of L is the set of linear combinations of L:

span(L) := {v ∈ V : v is a linear combination of L}

= {v ∈ V : v =
n∑

i=1

civi for some list of scalars c1, . . . , cn}.

If W = span(L), we also say that L spans W .

1We use notation such as “x1, . . . , xn” and “{1, . . . , n}” rather than the more commonly seen
“x1, x2, . . . , xn” and “{1, 2, . . . , n},” to avoid giving the impression that n must be at least 2.
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(c) We call the list L linearly independent if the only list of scalars c1, . . . , cn for which
c1v1 + · · · + cnvn = 0V is the trivial one, meaning the list of scalars in which every
term is 0. Otherwise we call L linearly dependent.

Proposition 3 (a) Let L be a list of vectors v1, . . . , vn in which not all terms are distinct;
i.e. for which vj = vk for some j, k ∈ {1, . . . , n} with j 6= k. (Obviously this is possible only

if n ≥ 2.) Then L is linearly dependent.

(b) If a list L in V is linearly independent, then all the terms of L are distinct.

Proof: (a) Let j, k ∈ {1, . . . , n} be such that j 6= k but vj = vk. Let c1, . . . , cn be the list
of scalars in which cj = 1, ck = −1, and ci = 0 for all i other than j, k. Then this list of
scalars is not the trivial list, but

∑n
i=1 civi = vj−vk = 0V . Hence L is linearly dependent.

(b) This follows immediately from (a).

Thus, a list of vectors does not even have a chance of being linearly independent
unless all its terms are distinct. This is the reason for the distinctness requirement in the
definition below (one of the usual definitions of linear independence/dependence of a set
of vectors):

Definition 4 Let S ⊆ V . We say that S is linearly independent if every list of distinct
elements of S is linearly independent. Otherwise we say that S is linearly dependent.

Example. As an example of the convenience afforded by defining linear independence
of lists of vectors, rather than just sets of vectors, consider the following. Every m × n
matrix has n columns. Or does it? What are the columns of the 4× 3 matrix

A =


1 2 1
2 3 2
3 4 3
4 5 4

 ?

Each column is a vector in R4. Since the first and third columns are identical, the set
of columns consists of only two vectors. But, looking at A, we see a third column sitting
there. Implicitly, we are regarding the columns of A as a 3-term list of elements of R4,
not just as set of elements of R4. The answer to our “Or does it?” is yes, as we originally
thought. Whether all the columns of an m×n matrix are distinct or not, an m×n matrix
has exactly n columns, because (without having said so explicitly in the past), we have
always treated the columns of an m × n matrix as the terms of an n-term of a list of
elements of Rm.

Note that the set of columns of A—a two-element set—is linearly independent. But
the list of columns is not. The column space of A—the span of the columns, as a subspace
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of R4—has dimension 2. Observe that this would be true also if the third column were
1.0001 times the first column, instead of being exactly 1 times the first column. In that
case, the set of columns would be a three-element set rather than a two-element set. But
either way, the columns form a three-term list.

Another concept more general than set that allows duplication is multi-set. In a
multi-set, each element is counted with a multiplicity that can be any positive integer.
The columns of the matrix A above form a multi-set with two (distinct) elements, one of
which has multiplicity 2 and the other of which has multiplicity 1. But this multi-set still
carries less information than the list of columns, because a multi-set does not take order
into account. Consider the matrix

B =


1 1 2
2 2 3
3 3 4
4 4 5

 .

The matrices A and B have the same set of columns, and even have the same multi-set of
columns, yet are different matrices because the columns appear in different orders. The
two lists of columns are different.

Remark 5 Since (by Proposition 3), the terms of any linearly independent list of vectors
are distinct, any such list v1, . . . , vm can be identified with an ordered set {v1, . . . , vm}We
will make this identification implicitly.

An ordered basis is then seen to be a (very special) linearly independent list. But,
as the comparison of the matrices A and B in the example above shows, ordered bases
are not the only important linearly independent lists. The ordering of a list of linearly
independent vectors can matter even when the list does not span V

As (part of) Remark 5 shows, the following definition of “ordered basis” is equivalent
to the one we’ve been using:

Definition 6 Assume that V is finite-dimensional and that dim(V ) > 0. An ordered basis
of V is a linearly independent list (in V ) that spans V .

Using the implicit identification in Remark 5, an ordered basis is a special type of
basis, as the terminology suggests.

Proposition 7 Assume that V has finite, positive dimension n. Then:

(a) No list in V with more than n terms can be linearly independent.

(b) No list in V with fewer than n terms can span V .
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(c) If L is a list in V with exactly n terms, then L is linearly independent if and only
if L spans V .

In class we proved an analogous proposition for sets with more than n, fewer than n,
or exactly n elements. Note that Proposition 7 is stronger than this analogous proposition,
because it applies whether or not the terms of the list are distinct (equivalently, whether
the number of terms is the same as the number of distinct terms).

Proof: We will make use of the folliwing result we proved previously as a corollary of the
rank-plus-nullity theorem: If W is a finite-dimensional vector space and T : W → V is
linear, then (a′) if dim(W ) > dim(V ), T cannot be one-to-one; (b′) if dim(W ) < dim(V ),
then T cannot be onto; and (c′) if dim(W ) = dim(V ), then T is one-to-one if and only if
T is onto.

Let v1, . . . , vm be a list L of vectors in V . Define T : Rm → V by

T (

 c1
...
cm

) =
m∑
i=1

civi .

It is easily checked that T is linear. (Students: wording like that is telling you to check, not

to assume the truth of what was just stated.)

By definition of span(L), the range of T is precisely span(L). Hence T is onto if and
only if L spans V . Furthermore, since T is a linear transformation, T is one-to-one if and
only if N(T ) = {0Rm}, which is equivalent to the statement that the only list c1, . . . , cm of
scalars for which

∑
i civi = 0V is the trivial list of m scalars, which in turn, is equivalent

to the statement that L is linearly independent.

(a) Assume that m > n. Then by (a′), T is not one-to-one, so N(T ) 6= {0Rm}, so L is
linearly dependent.

(b) Assume that m < n. Then by (b′), T is not onto. Hence L does not span V .

(c) Assume that m = n. Then, by (c′), T is one-to-one if and only if T is onto. But,
as seen earlier, “T is one-to-one” is equivalent to “L is linearly independent”, while “T is
onto” is equivalent to “span(L) = V .” Hence L is linearly independent if and only if L
spans V .

Corollary 8 Assume that V has finite, positive dimension n. If L is an n-term linearly
independent list in V , then L is an ordered basis of V .

Proof: This follows immediately from Proposition 7(c).
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Application to Problem 4 on Exam 1. (I’ll be referring to my solutions handout, so get

that out to follow along.

The statement of this problem was:

Let u, v, and w be distinct vectors in a vector space V . Show that if {u, v, w}
is a basis of V , then so is {u + v + w, v + w,w}

In my solutions handout, I gave a “proof” that, as I mentioned there, had a gap that
(after challenging you to find the gap!) I fixed with an ad hoc argument. We can now fix
the proof a better way.

We start the same way as in the solutions handout: “Assume that {u, v, w} is a basis
of V . Then dim(V ) = 3.”

Next, let L be the three-term list “u + v + w, v + w, w.” In the solutions handout,
what the portion of the argument from “Let a, b, c ∈ R” through “Hence S is linearly
independent” actually shows is that the list L is linearly independent. Hence, by Corollary
8, L is an ordered basis of V .

We could actually have filled the gap without using beyond Proposition 3 of these
notes. After showing that the list L is linearly independent, we could have argued as
follows:

By Proposition 3, the terms of L are distinct. Hence S := {u+v+w, v+w,w} is
a three-element linearly independent set in the three-dimensional vector space
V , so (by the result from class referred to in the solutions handout), S is a
basis of V .

Some additional comments

• The word “list” is my own, shorter term for “finite sequence”; it’s not official
terminology.

• Mathematically there is no difference between (i) an n-term sequence x1, . . . , xn

of elements of a set X, and (ii) an ordered n-tuple (x1, . . . , xn) of elements of X, also
known as an element of X ×X × · · · ×X (n copies of X), the n-fold Cartesian product
of X with itself. There is sometimes a bit of a difference in the way we think about a
list vs. an ordered n-tuple. In a list, we generally are thinking, “Here’s the first term,
here’s the second term, here’s the third term,” etc. In an ordered n-tuple (x1, . . . , xn),
we tend to think of all the xi as being present “at once” (like the coordinates of a point
(x, y, z) ∈ R3), rather than as elements being selected in a particular time-order.
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• If we want to give a particular list a short name, say L, the notation “x1, . . . , xn”
does not work well in sentence like “Let L = x1, . . . , xn be a list of elements of X;” it looks
at first like we’re setting L equal to x1. Ideally one should “protect” the list with symbols
that keep the list, as an object, separate from anythiing else. Parentheses would do this,
as in “Let L = (x1, . . . , xn),” but that notation can be misleading if the xi are distinct and
we want to think of ths list as an ordered set. One notation that can be used is {xi}ni=1,
but this is not perfect either, as it can be misinterpreted as the set {xi : 1 ≤ i ≤ n},
in which duplicates would count as the same element rather than as different terms of a
sequence. None of these choices is ideal, so I just used the long-form notation “x1, . . . , xn”
in these notes, and avoided writing anything like “L = x1, . . . , xn”.
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