
Using elementary operations to compute determinants

Below, except in examples with specific matrices, A and B are arbitrary n × n ma-
trices, where n ≥ 1 is fixed but arbitrary and c ∈ R is an arbitrary scalar.

Elementary row/column operations have simple effects on the determinant, because
of the alternating and multilinearity properties of the determinant function on Mn×n(R):

� Type-1 operations change the determinant by a sign.

I.e. if P is an operation of the type I’ve denoted Rop1ij, then
det(P (A)) = − det(A).

� The type-2 operations I’ve denoted Rop2ic and Cop2ic change the determinant by a
factor of c.

I.e., if P is either of these operations, then det(P (A)) = c det(A).

When used in equations involving determinants, I’ll refer to this as ”factoring c out
of row/column i.”

� Type-3 operations do not change the determinant at all: if P is one of these opera-
tions, then det(P (A)) = det(A).

For example, if the columns of A are v1, . . . , vn, and P is the operation I’ve
denoted Cop3ijc, with i = 1 and j = 2 for concreteness’ sake,

det(P (A)) = det
(
v1 + cv2 v2 . . . vn

)
(by def. of Rop3,12c)

= det
(
v1 v2 . . . vn

)
+ det

(
cv2 v2 . . . vn

)
[by linearity of the determinant in the first column separately]

= det(A) + 0

[since, in the second determinant, column 1 is a multiple of column 2 ]

= det(A).

Together, the first two bullet-points imply another important property of determi-
nants:

� We will be using the fact that if one column of A is a scalar multiple of another
column, or one row of A is a scalar multiple of another row, then det(A) = 0.

Expanding a determinant along a row or column is often the least effficient way to
compute the determinant. When a matrix has a lot of nonzero entries, the facts above can
be used to simplify the computation considerably, and—for some determinants involving
variable entries—to help us factor the determinant as a polynomial in these variables.
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(Factoring a determinant called the characteristic polynomial is the most common way to
find eigenvalues, a Chapter 5 topic. Example 4, later, is an instance in which elementary
operations help with this factorization.)

Example 1∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ =
R3→R3−R2

∣∣∣∣∣∣
1 2 3
4 5 6
3 3 3

∣∣∣∣∣∣ =
R2→R2−R1

∣∣∣∣∣∣
1 2 3
3 3 3
3 3 3

∣∣∣∣∣∣
= 0 (since two rows are identical).

Example 2∣∣∣∣∣∣
13 14 15
14 15 13
15 13 14

∣∣∣∣∣∣ =
R2 −→ R2 −R1

R3 −→ R3 −R1

∣∣∣∣∣∣
13 14 15
1 1 −2
2 −1 −1

∣∣∣∣∣∣
=

R1 −→ R1 − 13R2

R3 −→ R3 − 2R2

∣∣∣∣∣∣
0 1 41
1 1 −2
0 −3 3

∣∣∣∣∣∣
= 0 · something− 1 ·

∣∣∣∣ 1 41
−3 3

∣∣∣∣+ 0 · something

(expanding previous determinant along 1st column)

= −(3 + 123)

= −126,

less painfully than expanding the original determinant along any row or column.
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Example 3 (a) Let x, y, and z be arbitrary real numbers. Then∣∣∣∣∣∣
1 1 1
x y z
x2 y2 z2

∣∣∣∣∣∣ =
R3→R3−xR2

∣∣∣∣∣∣
1 1 1
x y z
0 y2 − xy z2 − xz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 1 1
x y z
0 y(y − x) z(z − x)

∣∣∣∣∣∣
=

R2→R2−xR1

∣∣∣∣∣∣
1 1 1
0 y − x z − x
0 y(y − x) z(z − x)

∣∣∣∣∣∣
= 1 ·

∣∣∣∣ y − x z − x
y(y − x) z(z − x)

∣∣∣∣− 0 · something + 0 · something

(expanding previous determinant along 1st column)

= (y − x)(z − x)

∣∣∣∣ 1 1
y z

∣∣∣∣
(factoring y − x out of column 1,

then factoring z − x out of column 2)

= (y − x)(z − x)(z − y).

(b) Let x1, x2, x3, x4 be real numbers. Then, by a procedure analogous to the one in
part (a), and with notation like “x3

2” meaning “(x3)
2”, we find that
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∣∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4

x1
2 x2

2 x3
2 x4

2

x1
3 x2

2 x3
3 x4

3

∣∣∣∣∣∣∣∣ =
R4→R4−x1 R3

∣∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4

x1
2 x2

2 x3
2 x4

2

0 x2
3 − x1x2

2 x3
3 − x1x3

2 x4
3 − x1x4

2

∣∣∣∣∣∣∣∣
=

R3→R3−x1 R2

∣∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4

0 x2
2 − x1x2 x3

2 − x1x3 x4
2 − x1x4

0 x2
3 − x1x2

2 x3
3 − x1x3

2 x4
3 − x1x4

2

∣∣∣∣∣∣∣∣
=

R2→R2−x1 R1

∣∣∣∣∣∣∣∣
1 1 1 1
0 x2 − x1 x3 − x1 x4 − x1

0 x2
2 − x1x2 x3

2 − x1x3 x4
2 − x1x4

0 x2
3 − x1x2

2 x3
3 − x1x3

2 x4
3 − x1x4

2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
x2 − x1 x3 − x1 x4 − x1

x2
2 − x1x2 x3

2 − x1x3 x4
2 − x1x4

x2
3 − x1x2

2 x3
3 − x1x3

2 x4
3 − x1x4

2

∣∣∣∣∣∣
(expanding previous determinant along 1st column)

=

∣∣∣∣∣∣
x2 − x1 x3 − x1 x4 − x1

x2(x2 − x1) x3(x3 − x1) x4(x4 − x1)
x2

2(x2 − x1) x3
2(x3 − x1) x4

2(x4 − x1)

∣∣∣∣∣∣
= (x2 − x1)(x3 − x1)(x4 − x1)

∣∣∣∣∣∣
1 1 1
x2 x3 x4

x2
2 x3

2 x4
2

∣∣∣∣∣∣
(factoring x2 − x1 out of column 1,

then factoring x3 − x1 out of column 2)

then factoring x4 − x1 out of column 3)

= (x2 − x1)(x3 − x1)(x4 − x1)(x3 − x2)(x4 − x2)(x4 − x3)

(using part (a)).

= Π
1≤i<j≤4

(xj − xi),

the product of all expressions xj − xi with 1 ≤ i < j ≤ 4. (“Π” is used for products the way

“Σ” is used for sums.)

The strategy above can be used to create an inductive proof that, for any n ≥ 2, and
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x1, . . . , xn ∈ R (or in C),∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn

x1
2 x2

2 . . . xn
2

...
...

...
...

x1
n−1 x2

n−1 ... xn
n−1

∣∣∣∣∣∣∣∣∣∣∣
= Π

1≤i<j≤n
(xj − xi). (1)

Fun fact, just FYI. Equation (1) is a famous formula with many uses, and can
be proven a few different, ways. It is also a an elegant formula. From the definition
of determinant, it is easy to see that the left-hand side of (1) is a polynomial in the n
variables x1, . . . xn. Furthermore, this polynomial function must evaluate to 0 whenever
two of the variables are equal, since if xi = xj then the ith and jth columns in the
determinant are identical. Meanwhile, the right-hand side of (1) is, in some sense, the
simplest polynomial in x1, . . . xn that evaluates to 0 whenever two of the variables are
equal. (Well, “simplest” up to an overall sign. If we replace xj −xi by xi−xj on the right-hand

side of (1), we get an equally ‘”simple” polynomial, but it differs from the original polynomial

by a factor of (−1)n(n−1/2, hence has the opposite sign when n = 4m + 2 or 4m + 3 for some

integer m.)

Example 4 [For Chapter 5 material.]

Let A =

 7 8 16
8 −5 8
16 8 7

 . Then the charactistic polynomial of A, with variable t, is
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det(A− tI) =

∣∣∣∣∣∣
7− t 8 16
8 −5− t 8
16 8 7− t

∣∣∣∣∣∣
=

R3→R3−2R2

∣∣∣∣∣∣
7− t 8 16
8 −5− t 8
0 18 + 2t −9− t

∣∣∣∣∣∣
= (9 + t)

∣∣∣∣∣∣
7− t 8 16
8 −5− t 8
0 2 −1

∣∣∣∣∣∣ (factoring 9 + t out of row 3)

=
R1→R1−2R2

(9 + t)

∣∣∣∣∣∣
−9− t 18 + 2t 0

8 −5− t 8
0 2 −1

∣∣∣∣∣∣
= (9 + t)2

∣∣∣∣∣∣
−1 2 0
8 −5− t 8
0 2 −1

∣∣∣∣∣∣ (factoring 9 + t out of row 1)

= (9 + t)2
{
(−1)

∣∣∣∣ −5− t 8
2 −1

∣∣∣∣− 2

∣∣∣∣ 8 8
0 −1

∣∣∣∣+ 0 · something

}
= (9 + t)2 {−[(5 + t)− 16]− 2(−8)}

= (9 + t)2(27− t) [or : −(t+ 9)2(t− 27)].

This involved much less computation (and less chance for error) than expanding the
original determinant along a row or column, obtaining the polynomial
−(t3 − 9t2 − 405t − 2187), and then trying to factor it. (However, the matrix A was
fine-tuned to make row-reduction work out as simply as it did, with common factors in-
volving t appearing in rows after some elementary operations were applied. Most matrices
aren’t nearly as cooperative! But, at the worst, we can always use elementary operations
to put one or more 0’s into a row or column, reducing the number of minors we need to
compute if we expand along that row or column.)
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