
An application of “eigenstuff”: Computing the Fibonacci numbers

NB 14.1. Let A ∈ M2×2(R) and let fA(t) = det(A−tI), the characteristic polynomial
of A with the variable named t. Show that

fA(t) = t2 − tr(A)t+ det(A). (1)

(Note: For larger square matrices, the coefficients of the characteristic polynomial cannnot

be expressed purely in terms of the trace and determinant of the matrix.)

NB 14.2 (Explicit formula for the Fibonacci numbers, via “eigenstuff”)
The Fibonacci numbers are the terms of the sequence

1, 1, 2, 3, 5, 8, 13, . . . , (2)

in which the first two terms are 1, and every term after that is the sum of the two
previous terms. In this problem you will use matrix algebra (specifically, “eigenstuff”)
to compute an explicit formula for the Fibonacci numbers and some related sequences.

For n ≥ 1 let fn be the nth term of the Fibonacci sequence (2). Thus f1 = f2 = 1
and fn+2 = fn+1 + fn for n ≥ 1. To simplify some formulas below, define f0 = 0
(effectively, just inserting a 0 at the start of the sequence (2)), and observe that
f2 = f1 + f0, so that the recursive relation fn+2 = fn+1 + fn now holds for n ≥ 0.

Define a sequence of vectors x0,x1,x2, . . . in R2 by

xn =

(
fn
fn+1

)
. (3)

(a) Show that this sequence of vectors (xn)
∞
n=0 satisfies

xn+1 = Axn for all n ≥ 0, (4)

where

A =

(
0 1
1 1

)
. (5)

Then use (4) to deduce that

xn = Anx0 for all n ≥ 1. (6)

(b) (i) Find the eigenvalues of A. You should find that these are two distinct, real
numbers λ1 and λ2. Hence A is diagonalizable, so det(A) = λ1λ2.

By problem NB 14.1, λ1λ2 = det(A) = −1 , so |λ1| |λ2| = 1. From your formula
for the eigenvalues, you should easily (without a calculator) be able to see that one
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of the eigenvalues has absolute value greater than 1, so the other must have absolute
value less than 1 (which can also be seen easily, but not quite as easily). Let λ1 be
the eigenvalue with |λ1| > 1 and let λ2 be the other eigenvalue. Below, let D be the

diagonal matrix

(
λ1 0
0 λ2

)
.

(ii) Find eigenvectors v1,v2 corresponding to λ1, λ2 respectively. Since λ1 ̸= λ2,
the set {v1,v2} is a linearly independent set in the two-dimensional vector space R2,
hence is a basis of R2 (an A-eigenbasis).

(c) Express the vector x0 =

(
0
1

)
in terms of v1 and v2. I.e. find c1, c2 ∈ R such

that x0 = c1v1 + c2v2. Then show that

Anx0 = c1 λ1
n v1 + c2 λ2

n v2 , (7)

and use equation (7) (together with equation (6) and the definition of xn) to write
down an explicit formula for the nth Fibonacci number fn.

If you’ve done everything correctly, in your formula for fn you’ll see the irrational
number

√
5 appearing in two fractions that are raised to higher and higher powers.

Yet the Fibonacci numbers are integers! Remarkably, not only do all the
√
5’s cancel,

allowing your formula to work out to a rational number for each n, the fractions
“conspire” with each other to produce an integer.

(d) For each n ≥ 1, compute Dn explicitly in terms of the eigenvalues of D. (Recall
that for a diagonal matrix, the eigenvalues are precisely the diagonal entries.) Relate
this to FIS exercise 5.1/16b.

(e) Use the information found in part (b) to construct an invertible matrix
C ∈ M2×2(R) such that D = C−1AC.

Since D = C−1AC, we also have A = CDC−1 (why?). From non-book problem
NB 11.10, we then have

An = CDnC−1 for any n ≥ 1. (8)

Since xn = Anx0, we now have two more ways of computing xn:

(i) Compute An explicitly, and then multiply x0 by the result.

(ii) Use the associativity of matrix multiplication to compute Anx0 = CDnC−1x0

without ever computing An itself, by doing the matrix computation in “right-to-left”
order (as indicated by the parentheses below):

C
( compute second︷ ︸︸ ︷
Dn( C−1x0︸ ︷︷ ︸

compute first

))

︸ ︷︷ ︸
compute third

. (9)
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Note that methods (i), (ii), and the method in part (c) should all give
the same answer! After you’ve done the computation all three ways, compare the
methods and see how and where the same information is packaged differently.
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