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Definitions of linear combinations and linear dependence/independence that apply
only to sets of vectors make it harder to state and/or prove some important linear-algebraic
facts. In these notes we approach these topics in a more flexible way that does not have
these deficiencies.

In these notes, “vector space” means “real vector space,” but everything we say
applies equally well to vector spaces over any field. We will often refer to real numbers
as scalars; if we were talking about vector spaces over a different field, “scalars” would
mean elements of that field.

Throughout these notes, V denotes a fixed but arbitrary vector space, “vector” means
“element of V ”, and 0V denotes the zero vector. An un-subscripted “0” means the scalar
0. A parenthetic item in blue is generally a side comment; it’s not actually part of the
definition, proposition, etc. that it’s sitting inside.

Definition 1 Let X be a set. We will call a finite sequence x1, . . . , xn of elements of X a
list of elements of X, or a list in X, and call the positive integer n the length of this list.1

Given a list x1, . . . , xn, the object xi (where 1 ≤ i ≤ n) is called the ith term of the list,
not the ith element of the list. (The term xi is still called an element of the set X; we just

don’t call it an element of the given list.) An n-term list is a list of length n.

A list is a more general object than a finite, ordered, nonempty set. (For what “finite,
ordered set” means, see Remark 10, paragraph 2.) In a list x1, . . . , xn, the terms xi need
not be distinct (there can be “repeats”), something that the definition of set does not
allow. This is why we don’t call xi the ith element of the list; only sets have elements.

Definition 2 Let L be a list of vectors v1, . . . , vn.

(a) A linear combination of the list L is a vector v ∈ V for which there exists an n-term
list of scalars c1, . . . , cn such that v = c1v1+ · · ·+ cnvn . (The sum in the last equation

is also denoted
∑n

i=1 civi.)

(b) The span of L is the set of linear combinations of L:

span(L) := {v ∈ V : v is a linear combination of L} (1)

= {c1v1 + · · ·+ cnvn : c1, . . . , cn ∈ R} (2)

=
{
v ∈ V : v =

n∑
i=1

civi for some list of scalars c1, . . . , cn
}
. (3)

1We use notation such as “x1, . . . , xn” and “{1, . . . , n}” rather than the more commonly seen
“x1, x2, . . . , xn” and “{1, 2, . . . , n},” to avoid giving the impression that n must be at least 2.
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If W = span(L), we also say that L spans W .

(Note: The right-hand sides on lines (1), (2), and (3) above are just different ways of

writing the same thing. We can go back and forth among them. Which one we choose, at

any given moment, can depend on what we’re trying to show or explain.)

(c) We call the list L linearly independent if the only list of scalars c1, . . . , cn for which
c1v1 + · · · + cnvn = 0V is the trivial list of scalars, meaning that ci = 0 for each
i ∈ {1, . . . , n} (which is often written as “c1 = c2 = . . . cn = 0” if n is assumed to be at

least 2, or as “c1 = . . . cn = 0” without that assumption). Otherwise we call L linearly
dependent.

Proposition 3 (a) Let L be a list of vectors v1, . . . , vn in which not all terms are distinct;
i.e. for which vj = vk for some j, k ∈ {1, . . . , n} with j ̸= k. (Obviously this is possible only

if n ≥ 2.) Then L is linearly dependent.

(b) If a list L in V is linearly independent, then all the terms of L are distinct.

Proof: (a) Let j, k ∈ {1, . . . , n} be such that j ̸= k but vj = vk. Let c1, . . . , cn be the list
of scalars in which cj = 1, ck = −1, and ci = 0 for all i other than j, k. Then this list of
scalars is not the trivial list, but

∑n
i=1 civi = vj −vk = 0V . Hence L is linearly dependent.

(b) This follows immediately from (a).

Thus, a list of vectors does not even have a chance of being linearly independent
unless all its terms are distinct. This is the reason for the distinctness requirement in the
definition below (one of the usual definitions of linear independence/dependence of a set
of vectors):

Definition 4 Let S ⊆ V . We say that S is linearly independent if every list of distinct
elements of S is linearly independent. Otherwise we say that S is linearly dependent.

Note that the empty set ∅ meets the definition of “linearly independent subset of V ”,
since there are no lists of distinct elements of S. (Each of these nonexistent lists meets
any condition whatsoever!).

Parts (a) and (b) of Definition 2 also have analogs for subsets of V :
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Definition 5 (a) A linear combination of elements of S is a vector v ∈ V that is a
linear combination of some list in S.

(b) (i) If S ̸= ∅, the span of S is the set of linear combinations of elements of S:

span(S) := {v ∈ V : v is a linear combination of some list of elements of S} (4)

= {c1v1 + · · ·+ cnvn : n ≥ 1, v1, . . . , vn ∈ S, and c1, . . . , cn ∈ R} (5)

=
{
v ∈ V : v =

n∑
i=1

civi for some n ≥ 1,

some list of vectors v1, . . . , vn ∈ S,

and some list of scalars c1, . . . , cn
}
. (6)

(ii) We define span(∅) = {0V }.

In both cases (i) and (ii), if W = span(S), we also say that S spans W (or generates
W ).

Remark 6 (Linear combinations: sets vs. lists) Note that for a vector v to be a
linear combination of a list v1, . . . , vn, every term vi of the list must appear on the RHS
(right-hand side) of the equation

v = c1v1 + . . . cnvn , (7)

multiplied by a scalar ci that may or may not be 0. For v to be a linear combination of
elements of a set S, there is no requirement that every element of S appear in the RHS of
(7). Such a requirement would cause difficulties when the set S is infinite, since we can’t
list all the elements of an infinite set. (However, for a finite nonempty set S = {v1, . . . , vn},
the definition of “linear combination of elements of S” is equivalent to one that is identical

to Definition 2(a), modulo replacing the words “the list L” by “elements of S”. Exercise:

Understand why these two definitions of “ linear combination”, for a finite nonempty set S, are

equivalent.)

Exercise 7 (a) Show that if any (i.e. at least one of) the terms of a list L in V is the
zero vector, then L is linearly dependent.

(b) Show that if a subset S of V contains the zero vector, then S is linearly dependent.

Proposition 8 Let L be a list of vectors v1, . . . , vn in V and let SL be the set of terms of
L. (Thus SL = {vi : 1 ≤ i ≤ n} =

{
v ∈ V : v = vi for some i ∈ {1, . . . , n}

}
.) Then:
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(a) span(SL) = span(L).

(Said another way: the span of L [the right-hand side of the equation above] is the same

as the span of the set of distinct terms of L [the left-hand side of the equation above]).

(b) If L is linearly independent, so is SL.

Equivalently, if SL is linearly dependent, then so is L.

(c) Assume the terms of L are distinct. Then L is linearly independent if and only if
SL is linearly independent.

If you have a good understanding of the definitions involved, part (a) of this proposition

may seem obvious. Writing down a formal proof without saying “it’s obvious”—which it may

not be to everyone for whom the ideas are new—is rather tedious, and you might find it difficult

to do. The proof below is one that you may find tedious even to read, but I have supplied it for

the sake of completeness, and because some of the ideas are ones that you (the student) might

have trouble stating with precision on your own (without relying on words that make sense to

you but that haven’t been given a mathematical definition).

Proof: (a) Let m = |SL| (the number of distinct terms of L); thus m ≤ n. Since a list has
at least one term (by definition), SL is not empty, so m ≥ 1 and span(SL) is exactly the
set of linear combinations of elements of SL. We may list the elements w1, . . . , wm be the
elements of SL as vi1 , . . . , vim for some i1, . . . im ∈ {1, . . . , n} with 1 = i1 < i2 < · · · < im
(with both i2 and im present in this chain of inequalities only if m ≥ 3, and with i2 present only

if m ≥ 2).

Let a1, . . . , an ∈ R. Then

a1v1 + · · ·+ anvn = b1w1 + · · ·+ bmwm ,

where, for each j ∈ {1, . . . ,m}, the coefficient bj is the sum of the coefficients ai for which
vi = wj. Hence span(L) ⊆ span(SL).

Now let b′1, . . . , b
′
m ∈ R, and for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} let

a′i =

{
b′j if i = ij ,
0 otherwise.

(Thus the list of scalars a′i has the property that a′i = 0 for all i [if any] satisfying im < i ≤ n,

and, ifm ≥ 2, for all i satisfying ij < i < ij+1 for some j ∈ {1, . . . ,m−1}. E.g. if we have n = 10,

m = 4, i2 = 4, i3 = 5, and i4 = 7, then the list a′1, . . . a
′
10 is b′1 , 0 , 0 , b

′
2 , b

′
3 , 0, b

′
4 , 0 , 0 , 0.) Then

b′1w1+ · · ·+ b′1wm = ai1vi1 + · · ·+aimvim = a1v1+a2v2+ · · ·+anvn (where “a2v2” is present

only ifm ≥ 2). Hence span(SL) ⊆ span(L), completing the proof that span(SL) = span(L).

(b) Assume that the list L is linearly independent. Then by Proposition 3(b), the
terms of L are distinct, so |SL| = n, and the n elements of SL are precisely v1, . . . , vn.
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Suppose that k ≥ 1, that w1, . . . , wk are k distinct elements of SL, and that b1, . . . , bk ∈
R are such that

b1w1 + · · ·+ bkwk = 0V . (8)

Since w1, . . . , wk are distinct, for each j ∈ {1, . . . , k} there is a unique ij ∈ {1, . . . , n} such
that wj = vij . Since the vectors wj are distinct, so are the indices i1, . . . , ik. Reordering
the list w1, . . . , wk if necessary, we may assume that i1 < i2 < · · · < ik (with i2 and ik
both present in this chain of inequalities only if k ≥ 3, and with i2 present only if k ≥ 2). For
i ∈ {1, . . . , n} and j ∈ {1, . . . , k} let

ai =

{
bj if i = ij ,
0 otherwise.

Then b1w1 + · · · + bkwk = ai1vi1 + · · · + aikvik = a1v1 + a2v2 + · · · + amvm (with “a2v2”

present only if k ≥ 2). Hence the hypothesis (8) implies that
∑

i=1 aivi = 0V , which implies
that ai = 0 for each i since (by hypothesis) L is linearly independent. But then bj = 0
for each j ∈ {1, . . . , k} as well.

Hence the set SL is linearly independent.

(c) By part (b), the “ =⇒ ” direction of this “iff” statement holds (whether or not
the terms of L are distinct), so we need only prove the “⇐=” implication.

Assume that SL is linearly independent. Let v1, . . . , vn be the terms of L. Suppose
a1, . . . , an ∈ R are such that

a1v1 + · · ·+ anvn = 0V . (9)

By hypothesis the vi are distinct, so v1, . . . vn is a list of distinct elements of the linearly
independent set SL. Hence each ai is 0. Hence L is linearly independent.

Example 9 As an example of the convenience afforded by defining linear independence
of lists of vectors, rather than just of sets of vectors, consider the following. Every m× n
matrix has n columns. Or does it? What are the columns of the 4× 3 matrix

A =


1 2 1
2 3 2
3 4 3
4 5 4

 ?

Each column is a vector in R4. (Once we start talking linear transformations, it will becomer

more convenient to write elements of Rn as column vectors; equivalently, as n × 1 matrices.)

Since the first and third columns are identical, the set of columns consists of only two
vectors. But, looking at A, we see a third column sitting there. Implicitly, we are regarding
the columns of A as a 3-term list of elements of R4, not just as set of elements of R4.
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The answer to our “Or does it?” is yes, as we originally thought. Whether all the columns
of an m× n matrix are distinct or not, an m× n matrix has exactly n columns, because
we always treat the columns of an m×n matrix as the terms of an n-term list of elements
of Rm. [Example continues on next page.]

Note that the set of columns of A—a two-element set—is linearly independent. But
the list of columns is not. The column space of A—the span of the columns, as a subspace
of R4—has dimension 2. Observe that this would be true also if the third column were
1.0001 times the first column, instead of being exactly 1 times the first column. In that
case, the set of columns would be a three-element set rather than a two-element set. But
either way, the columns form a three-term list. [End of Example 9.]

Remark 10 (Multi-sets and ordered sets) (Optional reading) Another concept more
general than set that allows duplication ismulti-set. In a multi-set, each element is counted
with a multiplicity that can be any positive integer. The columns of the matrix A above
form a multi-set with two (distinct) elements, one of which has multiplicity 2 and the
other of which has multiplicity 1. But this multi-set still carries less information than the
list of columns, because a multi-set does not take order into account.

Another related concept is that of an ordered finite set. An ordered finite set is simply
a finite set with the elements listed in a chosen order. For example, the six expressions

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}

all represent the same set, but six different ordered sets.

When we write down a (finite) set by literally listing all its elements, or by indexing
them by (say) {1, . . . n}, as in “{v1, . . . , vn}”, we are forced to choose an order in which to
write the elements. Sometimes it’s clear from context that we’re regarding the collection
of elements simply as a set, not an ordered set. For example, a class roster usually lists the
students in alphabetical order, and while this is convenient for record-keeping, everyone
understands that there’s no such thing as the first student in the class, the second student,
etc. Unfortunately, there is no standard notation that distinguishes an ordered finite set
from an unordered set (i.e. simply a set). By default, the notation “{v1, . . . , vn}” means
the unordered set. If the writer’s intended meaning is ordered set, he/she has to so.

To illustrate the different concepts discussed above—set, ordered set, list, and multi-
set—consider the matrices

A =


1 2 1
2 3 2
3 4 3
4 5 4

 and B =


1 1 2
2 2 3
3 3 4
4 4 5

 .

These two matrices the same set of columns, and even have the same multi-set of columns,
yet are different matrices because the columns appear in different orders; the two lists of
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columns are different. The two ordered sets formed by the columns of A may be written
as 


1
2
3
4

 ,


2
3
4
5


 and




2
3
4
5

 ,


1
2
3
4


 ,

both of which are ways of writing the set of columns of A.

Remark 11 By Proposition 3, the terms of any linearly independent list of vectors are
distinct. Hence any such list v1, . . . , vm can be identified with the ordered set {v1, . . . , vm}.
(See the second paragraph of Remark 10 for the meaning of “ordered set”.) We will make this
identification implicitly, treating such a list as an ordered set.

An ordered basis is then seen to be a (very special) linearly independent list. But,
as the comparison of the matrices A and B in the example above shows, ordered bases
are not the only important linearly independent lists. The ordering of a list of linearly
independent vectors can matter even when the list does not span V.

As (part of) Remark 11 shows, the following definition of “ordered basis” is equivalent
to the one we’ve been using:

Definition 12 Assume that V is finite-dimensional and that dim(V ) > 0. An ordered
basis of V is a linearly independent list (in V ) that spans V .

Using the implicit identification in Remark 11, an ordered basis is a special type of
basis, as the terminology suggests.

Proposition 13 Assume that V has finite, positive dimension n. Then:

(a) No list in V with more than n terms can be linearly independent.

(b) No list in V with fewer than n terms can span V .

(c) If L is a list in V with exactly n terms, then L is linearly independent if and only
if L spans V .

Many textbooks, e.g. [1], state and prove an analogous proposition for sets with
more than n, fewer than n, or exactly n elements. Note that Proposition 13 is stronger
than this analogous proposition, because it applies whether or not the terms of the list
are distinct (equivalently, whether or not the number of terms is the same as the number
of distinct terms).

Note: The original version of this handout was written for my Fall 2023 class after the

“Rank-Plus-Nullity Theorem”—which [1] calls the “Dimension Theorem”—had been covered.
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In the interests of efficiency at the time, I used that theorem in the proof below. For my 2024

class, a different set of notes has a proof of Proposition 13 that does not rely on the Rank-Plus-

Nullity Theorem.

Proof: We will make use of the following corollary of the rank-plus-nullity theorem: If W
is a finite-dimensional vector space and T : W → V is linear, then
(a′) if dim(W ) > dim(V ), T cannot be one-to-one; (b′) if dim(W ) < dim(V ), then T
cannot be onto; and (c′) if dim(W ) = dim(V ), then T is one-to-one if and only if T is
onto.

Let v1, . . . , vm be a list L of vectors in V . Define T : Rm → V by

T (

 c1
...
cm

) =
m∑
i=1

civi .

It is easily checked that T is linear. (Students: wording like that is telling you to check, not

to take the writer’s word!)

By definition of span(L), the range of T is precisely span(L). Hence T is onto if and
only if L spans V . Furthermore, since T is a linear transformation, T is one-to-one if and
only if N(T ) = {0Rm}, which is equivalent to the statement that the only list c1, . . . , cm of
scalars for which

∑
i civi = 0V is the trivial list of m scalars, which in turn, is equivalent

to the statement that L is linearly independent.

(a) Assume that m > n. Then by (a′), T is not one-to-one, so N(T ) ̸= {0Rm}, so L is
linearly dependent.

(b) Assume that m < n. Then by (b′), T is not onto. Hence L does not span V .

(c) Assume that m = n. Then, by (c′), T is one-to-one if and only if T is onto. But,
as seen earlier, “T is one-to-one” is equivalent to “L is linearly independent”, while “T is
onto” is equivalent to “span(L) = V .” Hence L is linearly independent if and only if L
spans V .

Corollary 14 Assume that V has finite, positive dimension n. If L is an n-term linearly
independent list in V , then L is an ordered basis of V .

Proof: This follows immediately from Proposition 13(c).

Some additional comments
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• The word “list” (as used in these notes) is my own, shorter term for
“finite sequence”; it’s not official terminology. One reason I use “list” instead of
“finite sequence” is to make sure students won’t think I might be talking about the
infinite sequences and series they learned about in Calculus 2, which are irrelevant to the
discussion in these notes.

• Mathematically there is no difference between (i) an n-term sequence x1, . . . , xn

of elements of a set X, and (ii) an ordered n-tuple (x1, . . . , xn) of elements of X, also
known as an element of X ×X × · · · ×X (n copies of X), the n-fold Cartesian product
of X with itself. There is sometimes a bit of a difference in the way we think about a
list vs. an ordered n-tuple. In a list, we generally are thinking, “Here’s the first term,
here’s the second term, here’s the third term,” etc. In an ordered n-tuple (x1, . . . , xn),
we tend to think of all the xi as being present “at once” (like the coordinates of a point
(x, y, z) ∈ R3), rather than as elements being selected in a particular time-order.

• If we want to give a particular list a short name, say L, the notation “x1, . . . , xn”
does not work well in sentence like “Let L = x1, . . . , xn be a list of elements of X;” it
looks at first like we’re setting L equal to x1. Ideally one should “protect” the list with
symbols that keep the list, as an object, separate from anything else. Parentheses would
do this, as in “Let L = (x1, . . . , xn),” but that notation can be misleading if the xi are
distinct and we want to think of this list as an ordered set. Furthermore, in a first course
on linear algebra, the notation “(x1, . . . , xn)” could lead some students to assume the
entries of the n-tuple are numbers, if that’s the only type of n-tuples a student has seen
before.) One notation that can be used is {xi}ni=1, but this is not perfect either, as it can
be misinterpreted as the set {xi : 1 ≤ i ≤ n}, in which duplicates would count as the same
element rather than as different terms of a sequence. None of these choices is ideal, so I
chose just to use the long-form notation “x1, . . . , xn” in these notes, and avoided writing
anything like “L = x1, . . . , xn”.
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