
Linear independence of eigenvectors to distinct eigenvalues

Theorem 1 below is a special case of FIS Theorem 5.5 that isolates the most important
principle behind the FIS theorem; in some sense Theorem 1 is the more important of these
two theorems, even though it is less general. Of the two theorems, Theorem 1 is easier to
state and easier to understand, and its proof is easier to follow.

After the proof of Theorem 1 there are some comments and two corollaries. Corollary
1 isolates another simple, important principle; Corollary 2 is the full-blown FIS Theorem
5.5. Although this route to a proof of Theorem 5.5 is longer than the one in the book,
it’s a bit more informative, and I think you’ll find it easier to follow.

Theorem 1 (“Eigenvectors to different eigenvalues are linearly independent”)
Let T be a linear operator on a vector space V. Suppose that v1, . . . , vk are eigenvec-

tors of T corresponding to distinct eigenvalues λ1, . . . , λk respectively. (Remember that

”distinct” means λi ̸= λj whenever i ̸= j.) Then

the list v1, . . . , vk is linearly independent. (1)

Proof: We proceed by induction on k.

First suppose k = 1. Let v1 be an eigenvector of T and let λ1 be the corresponding
eigenvalue (the distinctness criterion is met vacuously). By definition, eigenvectors are
never the zero vector, so {v1, . . . , vk} = {v1} is linearly independent.

Now let m ∈ N, and assume that the assertion in the theorem holds for k = m.
[Students: I recommend that while reading the argument below, you carry it out explicitly for

the case m = 1 on a separate piece of paper.] Suppose that v1, . . . , vm+1 are eigenvectors of
T corresponding to distinct eigenvalues λ1, . . . , λm+1 respectively. Let a1, . . . , am+1 ∈ R
be such that

a1v1 + · · ·+ · · ·+ aivi + . . . amvm + am+1vm+1 = 0V . (2)

Applying T to both sides of equation (2), and using both the linearity of T and the
hypothesis that T(vi) = λivi for 1 ≤ i ≤ m+ 1, we obtain

a1λ1v1 + · · ·+ aiλivi + · · ·+ amλmvm + am+1λm+1vm+1 = T(0V ) = 0V . (3)

But multiplying both sides of equation (2) by λm+1 yields

a1λm+1v1 + · · ·+ aiλm+1vi + · · ·+ amλm+1vm + am+1λm+1vm+1 = T(0V ) = 0V , (4)

so, subtracting equation (4) from equation (3), we find that

a1(λ1 − λm+1)v1 + · · ·+ ai(λi − λm+1)vi + · · ·+ am(λm − λm+1)vm = 0V . (5)

Since v1, . . . , vm are eigenvectors of T corresponding to distinct eigenvalues, our inductive
hypothesis guarantees that the list v1, . . . , vm is linearly independent. Hence, equation (5)
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implies that ai(λi − λm+1) = 0 for each i ∈ {1, . . . ,m}. But for each such i, the assumed
distinctness of the eigenvalues implies that λi − λm+1 ̸= 0, and hence that ai = 0.

Therefore ai = 0 for 1 ≤ i ≤ m, which simplifies equation (2) to am+1vm+1 = 0V .
But vm+1 ̸= 0V since vm+1 is an eigenvector. Hence am+1 = 0.

Thus, equation (2) holds only when ai = 0 each i ∈ {1, . . . ,m+1}. Therefore the list
v1, . . . , vm+1 is linearly independent.

By induction, the assertion in the theorem holds for all k ≥ 1.

Some comments:

1. Since no eigenvector can ever correspond to two different eigenvalues (not just in
the setting of this theorem), the theorem’s assumption that λi ̸= λj for i ̸= j
guarantees that vi ̸= vj for i ̸= j. Thus, the terms of the list v1, . . . , vk in the
theorem form a k-element set, and in place of statement (1) I could have said that
the set {v1, v2, . . . , vk} is linearly independent (as I did on the homework page).
The reason I used the “list” wording in this handout’s statement of the theorem
was to avoid having to say most of the preceding in the proof itself, which would
have distracted from the main idea of the proof.

Something worth keeping in mind is that no matter what the context (i.e. re-
gardless of whatever hypotheses are in effect), saying that a list of vectors v1, . . . , vk
is linearly independent is never weaker than saying that the set {v1, . . . , vk} is lin-
early independent, and is sometimes stronger. (It’s stronger when the terms of the
list are not all distinct, as discussed in the “Lists . . . ” handout.)

2. As a reminder: observe that between equations (2) and (3), equations (3) and (4),
and equations (4) and (5), I put words telling the reader the argument. As discussed
in Assignment 0 reading, “equation equation equation equation” is not an argument.
A proof is a logical argument.

In this proof, I put more words between consecutive equations than I really had
to. I had the luxury of not being under time-pressure, and, as a teacher, I try
to write proofs that every student in the class should be able to follow without a
struggle. The bare minimum that a student needs to put between equations (or
before the first equation) in a proof is an appropriate logical connector, a word
or phrase that gives the logical relation between equations (or between the first
equation and whatever preceded it). E.g. between equations (3) and (4) I could
simply have said “Equation (2) implies”.

But, between equations (3) and (4), I could not have simply said “This implies”,
since the default meaning of “This” would have been the previous equation, (3)
(which does not imply equation (4)). Use pronouns sparingly, if at all, in a
proof; there is too much danger of ambiguity, or of the default meaning of your
pronoun (according to standard rules of syntax) being the wrong noun, or of your
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pronoun having no antecedent at all. Although themost dangerous pronoun tends to
be “it”, almost every pronoun you might be tempted to use in a proof is potentially
dangerous. (The one exception is “we”. A personal pronoun, “we” has no danger
of being misinterpreted to stand for a statement or a mathematical object!) If you
look at my proofs, you’ll rarely see a pronoun other than “we”.

3. Whenever I give you a handout, I assume that you’ve read all the handouts I’ve
previously assigned you to read—and that if you’ve forgotten anything that I ad-
dressed in a particular handout, you’ll know that you should look at that handout
again to refresh your memory. In particular, this applies if you’re not sure exactly
what the term “inductive hypothesis” means, or if my proof does not contain certain
terminology you expected to see in a proof-by-induction.

Corollary 1 Let T be a linear operator on a vector space V. Suppose that λ1, . . . , λk are
distinct eigenvalues of T, and for each i ∈ {1, . . . , k}, let vi ∈ Eλi

(T) (the λi-eigenspace
of T). Suppose that v1 + v2 + · · ·+ vk = 0V . Then vi = 0V for each i.

Proof: Assume that vi ̸= 0V for m values of i, where m ≥ 1. Reordering the vi if
necessary, we may assume that vi ̸= 0V whenever i ≤ m and (if m < k) that vi = 0V
whenever i > m. Then, by definition of eigenspace, for each i ∈ {1, . . . ,m}, the vector vi
is an eigenvector of T with eigenvalue λi. But since vi = 0V for i > m,

v1 + · · ·+ vm = v1 + · · ·+ vm + · · ·+ vk = 0V ,

so the set {v1, . . . , vm} is linearly dependent. But by Theorem 1, this is impossible.

Hence vi = 0V for each i ∈ {1, . . . , k}.

Corollary 2 (FIS Theorem 5.5) Let T be a linear operator on a vector space V. Sup-
pose that λ1, . . . , λk are distinct eigenvalues of T, and for each i ∈ {1, . . . , k} let Si be
a linearly independent set of eigenvectors of T with eigenvalue λi. Then S1 ∪ · · · ∪ Sk is
linearly independent.

Proof: For each i ∈ {1, . . . , k}, let mi = |Si|. We may restrict attention to the case in
which mi ≥ 1 (Si ̸= ∅) for each i.

For each i ∈ {1, . . . , k}, let mi = |Si|. Since the eigenvalue associated to any eigen-
vector is unique, Si ∩ Sj = ∅ for i ̸= j, so |S| = m1 + · · · +mk. Let N = m1 + · · · +mk

and let S = S1 ∪ · · · ∪ Sk . Enumerate the elements of S as v1, . . . , vN , where the first m1

vectors are the elements of S1, the next m2 are the elements of S2, etc.

Suppose c1, . . . , cN ∈ R are such that
∑N

j=1 cjvj = 0V . Let w1 be the sum of the first

m1 terms of
∑N

j=1 cjvj, let w2 be the sum of the next m2 terms, etc., with wk being the
sum of the last mk terms. Then wi ∈ Eλi

(T) for each i ∈ {1, . . . , k} (since eigenspaces
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are subspaces), and w1 + . . . wk = 0V . From Corollary 1, it follows that wi = 0V for each
i ∈ {1, . . . , k}. For each such i, since Si is linearly independent, we must have cj = 0
for each j in the index-range corresponding to the elements of Si . Hence cj = 0 for each
j ∈ {1, . . . , N}.

Thus S is linearly independent.

4


