Non-book problem for Assignment 14

NB 14.1. Let k, n be integers with $1 \le k \le n$. The k^{th} elementary symmetric function σ_k of variables x_1, x_2, \ldots, x_n is defined by

$$\sigma_k(x_1,\ldots,x_n) = \sum_{i_1 < i_2 < \cdots < i_k} x_{i_1} x_{i_2} \ldots x_{i_k}.$$

(The sum is over all ordered k-tuples of integers (i_1, i_2, \ldots, i_n) satisfying $1 \le i_1 < i_2 < \cdots < i_k \le n$.) For example, with n = 3,

$$\sigma_1(x_1, x_2, x_3) = x_1 + x_2 + x_3 ,$$

$$\sigma_2(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3 , \text{ and}$$

$$\sigma_3(x_1, x_2, x_3) = x_1 x_2 x_3 .$$

(The Greek letter σ is a lower-case sigma.) These functions are called *symmetric* because interchanging any two of the variables—indeed, permuting the variables any way at all—does not change the value of the function. E.g., as you may check,

$$\sigma_2(x_1, x_2, x_3) = \sigma_2(x_1, x_3, x_2) = \sigma_2(x_3, x_2, x_1) = \sigma_2(x_2, x_1, x_3) = \sigma_2(x_2, x_3, x_1) = \sigma_2(x_3, x_1, x_2)$$

Observe that for any n, the first and last elementary symmetric functions are just the sum and product of the variables:

and
$$\sigma_1(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

 $\sigma_n(x_1, x_2, \dots, x_n) = x_1 x_2 \cdots x_n$.

(The σ_k wih 1 < k < n are less simple.)

(a) Let $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbf{R}$ and let D be the $n \times n$ diagonal matrix with $D_{ii} = \lambda_i, 1 \leq i \leq n$. Show that f_D , the characteristic polynomial of D, satisfies

$$(-1)^{n} f_{D}(t) = \det(tI - D) = (t - \lambda_{1})(t - \lambda_{2}) \dots (t - \lambda_{n}) = t^{n} - \sigma_{1}(\lambda_{1}, \dots, \lambda_{n}) t^{n-1} + \sigma_{2}(\lambda_{1}, \dots, \lambda_{n}) t^{n-2} - \dots + (-1)^{n} \sigma_{n}(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}).$$
(1)

(b) Using part (a), show that if A is a diagonalizable $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ (not necessarily distinct; an eigenvalue of algebraic multiplicity m appears m times in this list) then the characteristic polynomial $f_A(t)$ is also given by the right-hand side of equation (1). In particular,

$$det(A) = det(A - tI)|_{t=0} = f_A(0)$$

= constant term in $f_A(t)$
= $\sigma_n(\lambda_1, \lambda_2, \dots, \lambda_n)$
= $\lambda_1 \lambda_2 \dots, \lambda_n$.

Thus the determinant of A is the product of its eigenvalues (counted with multiplicity):

$$\det(A) = \lambda_1 \lambda_2 \dots \lambda_n . \tag{2}$$

Furthermore, the coefficient of t^{n-1} in $f_A(t)$ is always $(-1)^{n-1} tr(A)$.