Non-book problem for Assignment 1

NB 1.1. (a) Define binary operations "+'" and "*" on **R** by

and

 $x + y = (x^{1/3} + y^{1/3})^3$ for all $x, y \in \mathbf{R}$ $a * x = a^3 x$ for all $a, x \in \mathbf{R}$.

Check that **R**, equipped with +' as the addition operation, and * as the scalarmultiplication operation (i.e. with $\operatorname{sm}(a, x) = a * x$), is a vector space. Also check that x + 'y does not equal x + y unless x = 0, y = 0, or y = -x.

(b) Show the more general fact I asserted in class on Friday 1/17/25: Given any bijection $\phi : \mathbf{R} \to \mathbf{R}$, if we define operations $\text{plus}_{\phi} : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ and $\text{sm}_{\phi} : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ by

and

$$plus_{\phi}(x,y) = \phi\left(\phi^{-1}(x) + \phi^{-1}(y)\right)$$

$$sm_{\phi}(a,x) = \phi\left(a\phi^{-1}(x)\right),$$

then the set **R**, equipped with these operations, is a vector space. (Recall that for any function f, there is an inverse function if and only if f is a bijection, in which case " f^{-1} " denotes the inverse function [unless otherwise specified].)

Also check that the vector-space structure in part (a) is simply the one obtained this way from the bijection $x \mapsto x^{1/3}$ (i.e. the function $\phi : \mathbf{R} \to \mathbf{R}$ defined by $\phi(x) = x^{1/3}$). (By a vector-space structure on a set V, I simply mean a pair of operations

plus:
$$V \times V \to V$$
 and sm: $\mathbf{R} \times V \to V$

such that V, equipped with "plus" as the addition operation and "sm" as the scalarmultiplication operation, is a vector space.)