
Non-book problems for Assignment 6

An infinite set A is called countably infinite (or simply countable, if the “infinite”
is understood from context) if there is a one-to-one correspondence between A and
the N (the set of positive integers), i.e. a bijection from N to A or, equivalently, a
bijection from A to N. This is equivalent to the statement that the elements of A
can be enumerated; i.e. that A can be written as {a1, a2, a3, . . . }.

Fact: every infinite subset of a countably infinite set is countably infinite. (This
is not hard to prove, but just assume it for the sake of this problem-set.)

Not all infinite sets are countable. Those that aren’t are called uncountable.
Uncountable sets are “more infinite” than countably infinite sets (in a sense that
can be made precise, which I’m not doing here). It can be shown that the real
numbers are uncountable (i.e. that the set R is uncountable).

Reminder (unrelated to the preceding): Earlier this semester, we showed that for
any nonempty set S, the set F(S,R) of ALL functions from S to R, with addition
and scalar multiplication operations defined “pointwise” (meaning the way we did
this in class), is a vector space.

NB 6.1. We have seen that the countable set β = {1, x, x2, . . . } is a basis of P (R).
Consider the sets β1 := β \ {1} = {x, x2, x3, . . . } and βev := {(1, x2, x4, x6, . . . }.

(a) Show that each of the sets β1 and βev is an infinite, linearly independent set
that does not span P (R). (You may take for granted that these sets are infinite;

I’ve stated that property just for emphasis.)

(b) Describe span(β1) and span(βev) without using any linear-algebraic terms. (In
each case, the span consists of functions with certain easily-identified properties
that involve no linear-algebraic terminology.)

NB 6.2. In FIS exercise 1.6/ 21, half of what you showed is that if V is an infinite-
dimensional vector space, then V contains an infinite linearly independent subset L.
Show that if V is an infinite-dimensional vector space then V has a countably infinite,
linearly independent set that does not span V . (This is true whether or not V has a
countably infinite, linearly independent set that does span V , i.e. a countably infinite
basis.) Hint: problem NB6.1(a).

NB 6.3. Consider the vector space F(R,R). For each c ∈ R, define fc ∈ F(R,R)
by

fc(x) =

{
1 if x = c,
0 if x ̸= c.

Let B = {fc : c ∈ R}. Note that B is an uncountably infinite subset of F(R,R).
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(a) Show that the set B is linearly independent.

(b) Show that B does not span F(R,R), and hence is not a basis of this vector
space.

(c) In clear, plain English, describe which functions from R to R lie in span(B).
Here, “[i]n clear, plain English” means that you should not use any linear-
algebra terminology (other than “span(B)” itself), or invent your own termi-
nology, or use words or phrasing that might require mind-reading on the part
of the reader.

Remark. The fact that F(R,R) has an uncountable linearly independent set
makes it plausible that F(R,R) does not have a countable basis. This plausible fact
is actually true, but a proof is beyond the level of this course. Also beyond the level
of this course is the fact that F(R,R) has a basis at all. The failure of B to be a basis
of F(R,R) makes it hard to imagine (at least for me!) what subset(s) of F(R,R)
could be a basis. But it can be shown that every vector space has a basis. (A proof
of this, too, is above the level of this course. But for the interested student who’s
acquainted with the Axiom of Choice, there’s a proof in Section 1.7.)

NB 6.4. (Partial generalization of problem NB 6.3.) Let S be a nonempty set, and
consider the vector space F(S,R). For each a ∈ S, define fa : S → R (equivalently,
fa ∈ F(S,R)) by

fa(x) =

{
1 if x = a,
0 if x ̸= a.

Let BS = {fa : a ∈ S}.

(a) Show that the set BS is linearly independent.

(b) In clear, plain English, describe which functions from S to R lie in span(BS).

(c) Under what condition(s) on S does BS span F(S,R)?

The next problem is not related to the theme of problems NB 6.1–6.4.

NB 6.5. Let V be a finite-dimensional vector space and let n = dim(V). Show that
for every m ∈ {0, 1, . . . , n}, the space V has an m-dimensional subspace.

(In other words, for every potential subspace-dimension not ruled out by FIS Theorem

1.11, there actually is a subspace of V of that dimension.)

Hint: Start with a basis of V .
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