
Polynomials and Polynomial Functions
version date: 2/2/2025

In these notes, “FIS” is the textbook Linear Algebra by Friedberg, Insel, and Spence,
5th edition.

1 Introduction

Polynomials and polynomial functions, while closely related, are not quite the same thing.
In FIS, this is alluded to briefly (and only implicitly) on p. 10, after a definition of
“polynomial” that is actually imprecise. In courses up through calculus, the distinction
is not really important, but it becomes important in many higher-level courses.

In abstract algebra, polynomials are regarded as formal expressions—not functions—
that can be added and multiplied according to certain rules that are motivated by the
behavior of polynomial functions. (In these notes, the rules for multiplying two general

polynomials are irrelevant; the only multiplication of relevance to us will be the multiplication

of a polynomial by a scalar.) For clarity in this discussion, I’ll often refer to these as
“abstract polynomials”, but this is not standard terminology.

In the abstract polynomial 1+2x−3x2, the letter x is called an indeterminate, rather
than a variable. We speak of (abstract) polynomials in a given indeterminate1, and the
set of all such (abstract) polynomials with coefficients in a specific field2 is given a name
that includes the name(s) of the field and the indeterminate. For the set of polynomials
in the indeterminate x with real coefficients,we may use the (standard!) notation “R[x]”,
or non-standard notation notation selected by an author or instructor, such as “P (R;x)”.

The expressions “1 + 2x− 3x2” and “1 + 2y − 3y2” are abstract polynomials in two
different indeterminates, x and y, hence are not the same abstract polynomial. But they
determine the same polynomial function f : R → R, namely t 7→ 1 + 2t− 3t2. 3

1In these notes, “polynomial” means “polynomial in a single indeterminate”. (There is such a thing
as polynomials in two or more indeterminates; we’re just not talking about them here.)

2Or with coefficients in something called a commutative ring, which is more general than a field. You
can think of a commutative ring as a field except for lacking the property that all nonzero elements have
a multiplicative inverse. An example is the ring of integers, Z. However, in this class, we address only
polynomials with coefficients in a field.

3Said another way: having introduced P (R;x) and P (R; y)—the sets of real-coefficient polynomials
in non-variable indeterminates specifically denoted x and y—if we then allow ourselves to change the
meaning of “ x” or “y” above to “dummy variable used for writing down a formula for function-values,”
then the functions from R to R defined by x 7→ 1 + 2x − 3x2 and y 7→ 1 + 2y − 3y2 are identical. Be
warned that changing the meaning of notation mid-discussion is generally a bad idea. But in
this instance, this generally-bad idea does a good job of reproducing the thought process we’re using to
associate a polynomial with a function, so for the purposes of writing down a function determined by a
polynomial, we usually allow this notational flexibility (outside these notes).
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For the remainder of these notes, the word polynomial(s), when not fol-
lowed by the word function(s), means abstract polynomial(s).

2 Some notation and terminology

To maintain the distinction between polynomials with polynomial functions, in these
notes we use the notation P (R;x) for the set of polynomials in the indeterminate x (etc.
for any other indeterminate) and P (R) for the set of corresponding polynomial functions
(see Section 2.2). For n ≥ 0, we write Pn(R;x) for the set of polynomials of degree at
most n, in the indeterminate x. When equipped with certain “standard” operations of
addition and scalar multiplication, the sets P (R;x) and P (R) become vector spaces, so
we will often refer to these sets as spaces. When we call these sets spaces, the “standard
operations”—which we have not specified yet—are assumed.

There is only one space P (R) of polynomial functions from R to R. However, there
are infinitely many spaces of abstract polynomials, one for every conceivable name we
could choose for an indeterminate. For example, since the letter x and letter y are not
the same, the spaces P (R;x) and P (R; y) are not the same. However, these spaces
are “equivalent” in a sense we will not make precise in this version of these notes. For
simplicity, in these notes I will use only the space P (R;x)—i.e. when talking about
abstract polynomials, I will always use “x” as the indeterminate—except when making
comparisons like “P (R;x) vs. P (R; y)”. But anything we state about polynomials in x
has an immediate translation into a corresponding statement about polynomials in y or
any other indeterminate.

Terminological simplification. As has already been done above, we let ourselves use
the term “polynomial in x” for “polynomial in the indeterminate x” (etc. for other
indeterminates).

Remark 2.1 The notation “P (R;x)” is something I’ve cooked up as an alternative
to the standard notation “R[x]”, just to stay closer to the notation “P (R)” that FIS
uses for both the space of polynomials functions and the space of polynomials in the
indeterminate x.4 (Until Chapter 5, FIS takes the letter x to be the fixed indeterminate for all

abstract polynomials, even when the same letter is used for many other things on the same or

nearby pages. Many examples and exercises in FIS make no sense without an agreement—which

FIS leaves implicit—that “this is always what ‘x’ means when we’re talking about polynomials.”

This is very similar to the way ‘x’ is used as the variable for most functions in Calculus 1 and

lower-level courses, but it can cause difficulties in our course.) A bonus is that “P (R;x)”, like

4Although the book’s notation usage of “P (R)”, and its notation for individual polynomials,’ is
ambiguous and somewhat misleading, this usage is not uncommon. In a different course, I might not
mind the ambiguity, but in MAS4105 I find that it interferes with getting across certain ideas.
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“P (R)”, is easier to modify than is “R[x]” when we want to incorporate the restriction
“of degree at most n” into the notation.

2.1 Notation for individual polynomials

For individual abstract polynomials in x, some textbook-authors use notation of the form
“f(x)”, while others use notation such as “f” that does not incorporate x. only if the
author does not use standard notation for functions, in which “f(x)” denotes
the output of a function f when the input is x. (Abstract polynomials don’t have inputs or

outputs.) The FIS textbook uses notation such as f for most functions, but uses f(x) for
polynomial functions, as well as for abstract polynomials. This inconsistency can cause
confusion, especially among students who are still getting used to calling functions “f”
rather than “f(x).”

To avoid this potential confusion, in these notes we opt for consistency over what
students may find more familiar and comfortable. Notation of the form “f(x)” will be used
exclusively for outputs of functions. 5 Parenthesis-free names will be used for functions
and for abstract polynomials.

For example, we will give a name such as f or p (not f(x) or p(x)) to the abstract
polynomial 1 + 2x − 3x2 ∈ P (R;x). If we want to talk about the analogous polynomial
1 + 2y − 3y2 ∈ P (R; y) at the same time, we need a different name, e.g. q (not q(y)). If
we’re interested instead in polynomial functions from R → R, we could give a name like f
to the function x 7→ 1+2x−3x2, in which case f(x) = 1+2x−3x2, f(y) = 1+2y−3y2,
f(t) = 1 + 2t− 3t2, etc. (In the last sentence, we have assumed that x, y, and t have not
been set aside as names of indeterminates.) Remenber that for a function, the letter
chosen to represent the domain-variable is not part of the name of the function.

2.2 Functions associated with abstract polynomials

Suppose p ∈ P (R;x) is a polynomial. Then, by definition, there is a non-negative integer
n (the degree of f) and unique numbers a0, a1, a2, . . . , an such that

p = a0 + a1x+ a2x
2 + · · ·+ anx

n, (2.1)

and such that, if n > 0, then an ̸= 0.6 In these notes, we will use the notation p̂ for the
associated function fromR toR, i.e. the function obtained by replacing the indeterminate

5Of course, there are other uses of parentheses in mathematics. For example, in “A(B + C)” could
mean several different things, depending on what A, B, and C are. If these objects are (say) real numbers
or algebraic expressions, then “A(B +C)” means the product of the numbers/expressions A and B +C.
But if we are given that A is a function whose domain is a set S on which a binary operation “+” is
defined, and B and C are elements of S, then A(B + C) means the output of the function A when the
input is B + C. It is always the writer’s responsibility to make sure that, whenever he/she is using
parentheses, only one interpretation makes sense.

6For “clarity of pattern”, we have included a1, a2, a1x, and a2x
2 in the preceding sentence. However,

a1 and a1x are present only if n ≥ 1, and a2 and a2x
2 are present only if n ≥ 2.
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x by the domain-variable of a function from R to R. In other words, p̂ : R → R is the
function defined by

p̂(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n. (2.2)

Definition 2.2 A function g : R → R is called a polynomial function if g = p̂ for
some p ∈ P (R;x). In these notes, P (R) denotes the set of all polynomial functions from
R → R.

Recall that F(R,R) denotes the space of all functions from R to R. Thus we can
also write the definition of P (R) either of the following ways:

P (R) = {g ∈ F(R,R) : there exists p ∈ P (R;x) such that g = p̂ } (2.3)

= {p̂ : p ∈ P (R;x)} ⊆ F(R,R). (2.4)

Exercise 2.3 Show that P (R) is a subspace of F(R,R).

When we refer to “the vector space P (R)” (or simply “the space P (R)”, the opera-
tions are always understood to be the ones inherited from F(R,R); i.e. we are always
implicitly regarding P (R) as a subspace of F(R,R).

3 Other differences between polynomials and poly-

nomial functions

In FIS, “polynomial” sometimes means abstract polynomial and sometimes means poly-
nomial function., and uses the notation “P (R)” both for the space P (R;x) and the space
called P (R) in these notes (the space of polynomial functions). In a later section of these
notes [not yet written as of 2/2/2025 because we haven’t introduced the relevant ideas
and terminology in our class yet], we’ll be able to show that these two vector spaces are
“essentially the same”. However, FIS treats them as being the same with no careful justi-
fication.7 In this section we examine some ways in which these spaces are fundamentally
different.

Equality

One fundamental difference between (abstract) polynomials and polynomial functions
is the definition of equality. By definition, two abstract polynomials in x, say p =
a0 + a1x+ · · ·+ anx

n and q = b0 + b1x+ · · ·+ bmx
m, are equal if and only if n = m and

ai = bi for each i ∈ {0, . . . , n}, but by definition, two functions g, h : R → R are equal
if and only if g(t) = h(t) for all t ∈ R. The criteria for equality are not the same.

7There is a very quiet reference to the issue on p. 10, which refers the reader to p. 564 the very last
page of the very last appendix of the book. Even on p. 564, only partial justification for regarding P (R;x)
and P (R) as being “the same” is given.
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This begs an important question: is it possible for two different (abstract) polyno-
mials in x—possibly even polynomials of different degree—to have the same associated
function in P (R)? I.e. for p and q ∈ P (R;x), is it possible to have p ̸= q and yet have
p̂ = q̂?

Fortunately, the answer to this question is no.8. One way to see this is that if two
infinitely differentiable functions g, h ∈ F(R,R) are equal, then and g(k)(t) = h(k)(t) for
all k ≥ 0 adn all t ∈ R (where the superscript “(k)” denotes kth derivative for k ≥ 1, and
where we define f (0) = f for every f ∈ F(R,R)). In particular this applies with g = p̂
and h = q̂, where p, q ∈ P (R;x) (since, from Calculus 1, polynomial functions are infinitely

differentiable). But if p = a0 + a1x+ · · ·+ anx
n, then

p̂(k)(0) =

{
k! ak if 0 ≤ k ≤ n,
0 if k > n.

(3.1)

(Recall that 0! is defined to be 1.) Similarly if q = b0 + b1x+ · · ·+ bmx
m, then

q̂(k)(0) =

{
k! bk if 1 ≤ k ≤ m
0 if k > m.

It follows that if p̂ = q̂ then n = m and ai = bi for each i ∈ {1, . . . , n}, and hence p = q.

We record this just-proved fact as the following proposition:

Proposition 3.1 Let T : P (R;x) → P (R) be the function defined by T (p) = p̂ (see
equations (2.1) and (2.2)). Then T is one-to-one.

Note: If the relation between derivatives and the coefficients in polynomial functions
reminds you of Taylor polynomials (or Taylor series), it should! Equation (3.1)
implies that we can rewrite p and a formula for p̂ as

p =
n∑

k=0

p̂(k)(0)

k!
xk (3.2)

and p̂(t) =
n∑

k=0

p̂(k)(0)

k!
tk for all t ∈ R. (3.3)

This just recapitulates something you (should have) learned in Calculus 2: a poly-

nomial function of degree n in x is “its own Taylor polynomial” of degree n, and “its

own Taylor series” (since all the Taylor coefficients beyond the degree-n coefficient

are 0).9

8However, the answer would be “yes” if R were replaced by a finite field, an object we have not
discussed, but that FIS does discuss.

9Taylor polynomials and series also have a “base point” or “center point”, the c you saw in formulas

like “
∑n

k=0
f(k)(c

k! (x − c)k.” We needed only to consider the case c = 0 in the proof of Proposition 3.1,

but for any c ∈ R it’s true that if f is a polynomial function of degree n, then f(t) =
∑n

k=0
f(k)(c

k! (t− c)k.
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For the remainder of this section, the function T : P (R;x) → P (R) is as
defined in Proposition 3.1 (the function p 7→ p̂). Also, we will use the notation
0fcn for the zero element of F(R,R) (the constant function with value 0).

We have two quick corollaries of Proposition 3.1:

Corollary 3.2 The only polynomial function that is identically zero is T (0P (R;x)). Said
another way: if a0, a1, . . . , an ∈ R are such that

a0 + a1t+ a2t
2 + · · ·+ ant

n = 0 for all t ∈ R, (3.4)

then each coefficient ai is 0.

Proof: Observe that equation (3.4) is the statement that T (a0+a1x+ · · ·+anx
n) = 0fcn.

But clearly the zero polyomial 0P (R;x) satisfies T (0P (R;x)) = 0fcn. By Proposition 3.1, no
other polynomial has this property. Thus if (3.4) holds, then all the coefficients ai must
be 0.

Corollary 3.3 The function T in Proposition 3.1 is a bijection from P (R;x) to P (R).
(Recall that a bijection is function that is both injective [one-to-one] and surjective [onto].)

Proof: Proposition 3.1 shows that T is one-to-one. The very definition of the set P (R)
shows that T is onto. (Recall Definition 2.2 or equation (2.3) or (2.4).)

Operations

The vector-space operations on P (R;x) and P (R) are also defined quite differently.
Whereas the operations on P (R;x) are defined termwise10 while the operations on P (R),
a space of functions, are defined pointwise11.

A fact that is key to our (eventual) ability to regard P (R;x) and P (R) as “essentially
the same” as that these differently defined operations on the two spaces are consistent
with each other in a sense made precise in the next proposition:

Proposition 3.4 (a) For all p, q ∈ P (R;x), the relation p̂+ q = p̂+ q̂ holds; i.e.

T (p+ q) = T (p) + T (q). (3.5)

10Meaning that for addition, coefficients of like powers of x are added; for scalar multiplication by c,
the coefficient of each power of x is multiplied by c.

11I.e. by using addition and scalar-multiplication of function values (outputs) at each point of the
domain (each input).
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(b) For all p ∈ P (R;x) and c ∈ R, the relation ĉp = cp̂ holds; i.e.

T (cp) = cT (p). (3.6)

In other words, given p, q ∈ P (R;x) and c ∈ R, if we add p and q (or multiply p by
a scalar c) in P (R;x) and then form polynomial function associated with the result, we
obtain the same function as if we had formed the functions p̂, q̂ first and then added them
as functions (or multiplied the function p̂ by c).

Proof: (a) Let p, q ∈ P (R;x); without loss of generality assume deg(p) ≥ deg(q) (where

“deg” denotes degree) and let n = deg(p) and m = deg(q). Let a0, . . . , an and b0, . . . bm

denote the coefficients of p, q respectively, and define b̃i =

{
bi if 0 ≤ i ≤ m,
0 if m < i ≤ n.

Then

p + q = c0 + c1x + · · · + cnx
n, where ci = ai + b̃i for each i ∈ {0, 1, . . . , n}. Hence for all

t ∈ R,

p̂+ q(t) = (a0 + b̃0) + (a1 + b̃1)t+ · · ·+ (an + b̃n)t
n

=
(
a0 + a1t+ · · ·+ ant

n
)

+
(
b̃0 + b̃1t+ · · ·+ b̃nt

n
)

=
(
a0 + a1t+ · · ·+ ant

n
)

+
(
b0 + b1t+ · · ·+ bmt

m
)

(by def. of b̃i)

= p̂(t) + q̂(t).

Hence p̂+ q = p̂+ q̂.

(b) Let p ∈ P (R;x), let c ∈ R, and again write p as a0 + a1x + · · · + anx
n. Then

cp = ca0 + (ca1) + · · ·+ (can)x
n, so for all t ∈ R,

ĉp(t) = (ca0) + (ca1)t+ · · ·+ (can)t
n = c(a0 + a1t+ · · ·+ ant

n) = c p̂(t) = (cp̂)(t).

Hence ĉp = c p̂. (Exercise: Give a precise justification for each of the equalities in the preceding

argument.)

Linear Independence of Monomials

In P (R;x), the elements 1, x, x2, x3, . . . are called monomials. We define the notation
“x0” to mean 1, and define x1 to mean x, so that every monomial can be denoted xj for
some integer j ≥ 0. If a0, a1, . . . an ∈ R and a0 + a1x + · · · + anx

n = 0P (R;x), then
by definition of equality in P (R;x), all the scalars ai must be 0. Hence, practically by
definition, in P (R;x) the monomials are linearly independent. (More precisely, the set of
monomials, {xj : j ≥ 0}, is linearly independent.)

However, in P (R), we cannot simply define the corresponding set of functions M :=
{fj := T (xj) : j ≥ 0} to be linearly independent. Since P (R) is a subspace of F(R,R),
a subset S ⊆ P (R) is linearly independent if and only if S is linearly independent as
a subset of F(R,R). Thus, the given subset M of P (R) either is linearly independent
or it is not; we can’t simply declare M to be linearly independent by definition. Linear
dependence/independence of M is something that has to be proven:
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Proposition 3.5 For j ≥ 0, let fj = T (xj) ∈ P (R). Then the set {fj : j ≥ 0} is linearly
independent.

Proof: Suppose that j1, . . . , jn are distinct non-negative integers, and c1, . . . , cn are
scalars, such that c1fj1 + · · · + cnfjn = 0fcn. Let N be the largest of the integers ji,
and define a0, . . . aN ∈ R by

ak =

{
cji if k = ji
0 if k /∈ {j1, · · · jn}.

Then 0fcn = c1fj1 + · · · + cnfjn = a0f0 + a1f1 + · · · + aNfN (the function t 7→ a0 + a1t +
· · ·+aN t

N). (In other words: for any k ∈ {0, . . . , N} that is not one of the ji, we have assigned

a coefficient of 0 to the corresponding power-function. For any k that is one of the ji, we have

kept the corresponding coefficient ci as aji , the coefficient of the corresponding power function.)

By Corollary 3.2, each coefficient ak is 0 (0 ≤ k ≤ N), and hence so is each coefficient ci
(1 ≤ i ≤ n).

Hence {fj : j ≥ 0} is linearly independent.

P (R) definable more than one way

We defined the subset P (R) ⊆ F(R,R) as the the set of functions that could be
written as p̂ for some p ∈ P (R;x). An alternative definition of the same subset of F(R,R)
is

P̃ (R) = {f ∈ F(R,R) : f is infinitely differentiable and f (k) = 0fcn for some k ≥ 1}.
(3.7)

(Here, as earlier in this section, f (k) denotes the kth derivative of f .) By contrast, the space
P (R;x) of abstract polynomials has no corresponding alternate definition.

We leave it as an exercise for the student to show that, indeed, P̃ (R) = P (R).

The characterization of P (R) as the set in (3.7) also leads to an alternate definition
of degree of a polynomial function: for f ∈ P (R), we can define the degree of f to be the
smallest k ≥ 0 for which f (k+1) = 0fcn.
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