MAA 4211, Fall 2001-Homework \# 5 non-book problems

Hand in B1, B2ab, and B3. Do not do B2 and B3 until you have read the "Interiors, Closures, and Boundaries" handout.

B1. Let $E=\mathbf{Q}$ with the usual metric $(d(x, y)=|x-y|)$. Give an example of a nonempty, proper subset of \mathbf{Q} that is both open and closed.
B2. (Hand in only parts (a) and (b).) Let $E=E^{2}$ (Euclidean 2-space). Let $p \in E$ and let $r>0$.
(a) Show that $\overline{B_{r}(p)}=\bar{B}_{r}(p)$ (i.e. the closure of an open ball is the closed ball with the same center and radius).
(b) Show that $\partial B_{r}(p)$ is the sphere of radius r centered at p, defined as $\{q \in E \mid$ $d(p, q)=r\}$. (This is the general definition of "sphere" for an arbitrary metric space; spheres in E^{2} are circles.)
(c) Re-do parts (a) and (b) with E^{2} replaced by E^{n}, where n is arbitrary. Once (a) and (b) are done, you should find this easy; if not, then your arguments in (a) and (b) are probably wrong.

B3. Give an example of a metric space E for which there is an open ball $B_{r}(p)(r>0)$ whose closure is not the closed ball $\bar{B}_{r}(p)$. (Hint: you have already come across a metric space with this property.)

B4. (Do not hand in.) Let S be an arbitrary set, let P be a property that a given subset of S may or may not have, and let Q be a property that a given element of S may or may not have. Make sure you understand that P and Q are entirely different sorts of animals.

Think about why the following two statements about arbitrary subsets $X \subset S$ are not equivalent in general (nor is there even a one-way implication in either direction; the statements are simply unrelated).

- Statement 1: "The subset X does not have property P."
- Statement 2: "The complement of X does have property P."

Experiment with some examples of S, X, and P until there is no doubt in your mind as to why Statements 1 and 2 are not logically equivalent. (E.g consider $S=\mathbf{R}, P=$ the property of being a finite set.) Once you are comfortable with this, think about the case in which S is a metric space and P is either of the properties "open" or "closed". Make sure you understand that there is no contradiction in the fact that Statements 1 and 2 are not equivalent (in general), while the following two statements are equivalent:

- Statement 3: " $Y=\{y \in S: y$ does not have property $Q\}$."
- Statement 4: "The complement of Y is $\{y \in S: y$ does have property $Q\}$."

