MAA 4211, Fall 2001-Homework \# 6 non-book problems

Hand in both problems.
B1. Let d, d^{\prime} be equivalent metrics (as defined on the last exam) on a nonempty set E.
(a) Prove that (E, d) is complete iff $\left(E, d^{\prime}\right)$ is complete.
(b) Prove that (E, d) is compact iff $\left(E, d^{\prime}\right)$ is compact.

B2. (a) Let $S \subset \mathbf{E}^{n}$ and let p be a point of \mathbf{E}^{n} not lying in S. Suppose that there is a point $q \in S$ that, among all points in S, minimizes distance to p. Prove that q lies in the boundary of S. (In the terminology of the last exam, problem 6 , the hypothesis here is that $\operatorname{dist}(p, S)=d(p, q)$-i.e. that the infimum $\operatorname{defining} \operatorname{dist}(p, S)$ is actually a minimum, achieved at q. If you do not know the distinction between a minimum and an infimum [=g.l.b. when finite], review your notes.)
(b) If we replace \mathbf{E}^{n} in part (a) by an arbitrary metric space, is the conclusion still true? (If yes, give a proof; if no, give a counterexample.)

