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Constructing R from Q: Dedekind cut approach

The treatment below is adapted from the one in Avner Friedman’s text Advanced
Calculus.

Definition 1. A (Dedekind) cut is an ordered pair of subsets of Q, (A,B), satisfying
(i) A and B are both nonempty;
(ii) A and B are complements of one another (in Q); and
(iii) a < b for all a ∈ A, b ∈ B.

If (A,B) is a cut, we will refer to a maximal element of A (if one exists) and a minimal
element of B (if one exists) as extremal elements.

Examples.
1. A = {x ∈ Q | x ≤ 1}, B = {x ∈ Q | x > 1}. In this example, A has an extremal
element but B has does not.
2. A = {x ∈ Q | x < 1}, B = {x ∈ Q | x ≥ 1}. In this example B has an extremal
element but A does not.
3. A = {x ∈ Q | x ≤ 0}⋃{x ∈ Q | x > 0 and x2 < 2}, B = {x ∈ Q | x > 0 and x2 ≥ 2}.
In this example neither A nor B has an extremal element.

The first exercise below shows that, with regard to extremal elements, every cut is
of one of the types in the three examples above.

Exercises. Be careful in doing the exercises in this handout that you do not use any of
the results in Rosenlicht whose proofs were based on the least-upper-bound property of
the real numbers. The purpose of this handout is to show that there exists an ordered
field with the LUB property; we can’t assume that such an object exists in order to prove
that such an object exists. However, you may find yourself wanting to use the analogs of
some of Rosenlicht’s LUB 1 through LUB 5 statements, with the reals replaced by the
rationals. If so, supply a proof (for the rationals) of any such statement, remembering
that Q does not have the LUB property.

1. Let (A,B) is a cut. Prove if one of the sets A,B has an extremal element, the other
does not.

2. Let (A,B) be a cut. Prove that A = {x ∈ Q | x < b ∀b ∈ B} and that B = {x ∈
Q | x > a ∀a ∈ A}.

3. Let (A,B) be a cut. (a) Prove that if x ∈ A, then A contains every rational number
≤ x. (b) Prove that if x ∈ B, then B contains every rational number ≥ x.

4. Let (A,B) be a cut. Prove that for all positive ε ∈ Q, there exist a ∈ A, b ∈ B such
that b− a < ε.
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Definition 2. A cut (A,B) is called normalized if B does not contain a minimal element.
If (A,B) is a cut we define the normalization of (A,B) to be the cut (Â, B̂) defined
as follows: (i) if (A,B) is normalized, then Â = A, B̂ = B; and (ii) if (A,B) is not
normalized, then Â = A

⋃{bmin}, B̂ = B − {bmin}, where bmin is the minimal element of
B.

Definition 3. A real number is a normalized cut. The set of real numbers is denoted R.
A real number (A,B) is called rational if A contains a maximal element, and irrational
otherwise. (Note: The term “rational number” in these notes will always mean “element
of Q”. To refer to a rational element of R, we will use the phrase “rational real number”
or “rational cut”.)

Notation. Let ι : Q → R be the map defined by ι(q) = (Aq, Bq), where Aq = {x ∈ Q |
x ≤ q} and Bq = {x ∈ Q | x > q}.

Exercise.

5. Prove that ι is a 1-1 correspondence between Q and the set of rational real numbers.

Definition 4. The real number 0 is ι(0), where ι is as in Exercise 5. The real number
1 is ι(1). A real number (A,B) is called negative if 0 ∈ B, nonnegative if 0 ∈ A, and
positive if A contains a positive rational number.

Notation. For A ⊂ Q, let −A = {−a | a ∈ A}.

Exercises.

6. Let (A1, B1), (A2, B2) be cuts. DefineA3 = {x ∈ Q | ∃a1 ∈ A1, a2 ∈ A2 such that x ≤
a1 + a2}, B3 = Q− A3. Prove that (A3, B3) is a cut.

7. Prove that if (A,B) is a cut, then (−B,−A) is a cut, and that (Â, B̂) is positive if
and only if (−̂B, −̂A) is negative.

8. Prove that every real number is either 0, positive, or negative, and that the cases
are mutually exclusive.

We next need to endow R with the operations of addition and multiplication. In-
tuitively, we do this by seeing how, for rational numbers q, r, the cuts ι(q + r) and ι(qr)
are related to the cuts ι(q), ι(r). We then turn these relations into the definitions of addi-
tion and multiplication of arbitrary normalized cuts (as opposed to the just the rational
normalized cuts).

Definition 5. Let x = (A1, B1), y = (A2, B2) be normalized cuts. The real number x+ y
is defined to be (Â3, B̂3), the normalization of the cut (A3, B3) defined in Exercise 1. (The
reason for not simply defining x+ y = (A3, B3) is that for some irrational choices of x, y,
but not all, the cut (A3, B3) will not be normalized.)

Exercise.
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9. Let x = (A1, B1), y = (A2, B2) be normalized cuts. (a) If x, y are both non-negative,
define A3 = {x ∈ Q | ∃a1 ∈ A1, a2 ∈ A2, a1 ≥ 0, a2 ≥ 0 such that x ≤ a1a2}, B3 =
Q−A3. (b) If x is nonnegative and y is negative, define A3 = {x ∈ Q | ∃b1 ∈ B1, a2 ∈
A2, such that x ≤ b1a2}, B3 = Q − A3. (c) If x is negative and y is nonnegative,
define A3 = {x ∈ Q | ∃a1 ∈ A1, b2 ∈ B2, such that x ≤ a1b2}, B3 = Q − A3. (d)
If x, y are both negative, define B3 = {x ∈ Q | ∃a1 ∈ A1, a2 ∈ A2, such that x ≥
a1a2}, A3 = Q−B3.

Show that in all four cases, (A3, B3) is a cut.

Definition 6. Let x = (A1, B1), y = (A2, B2) be normalized cuts. Define x ·y = (Â3, B̂3),
the normalization of the cut (A3, B3) defined in Exercise 9.

Exercises.

10. Prove that for all a, b ∈ Q, ι(a+ b) = ι(a) + ι(b) and ι(ab) = ι(a) · ι(b).

11. Prove that R, with the operations +, ·, the additive identity 0, and the multiplicative
identity 1, satisfies field properties I-IV on p. 16 of Rosenlicht.

12. For all x ∈ R and nonzero y ∈ R, figure out how define the elements −x and y−1

appropriately, and prove that the field property V on p. 16 of Rosenlicht is satisfied.

13. Prove that ι(−a) = −ι(a) for all a ∈ Q and that ι(a−1) = ι(a)−1 for all nonzero
a ∈ Q.

14. Combining exercises 11 and 12, we have now shown that R is a field. What is it
that exercises 5,10, and 13, together with Definition 4, say about the relationship
of Q to R?

Definition 7. Let R+ denote the set of positive real numbers, and let R− denote the set
of negative real numbers.

Exercises.

15. Prove that ι(Q+) ⊂ R+ and ι(Q−) ⊂ R−.

16. Prove that R has the order property (as defined on p. 19 of Rosenlicht).

17. Define <, >, etc. as on p. 19 of Rosenlicht. Prove that if x = (A1, B1) ∈ R and
y = (A2, B2) ∈ R, then x ≤ y iff A1 ⊂ A2.

Finally, we have the theorem we’ve been waiting for:

Theorem. R has the Least Upper Bound property.
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Proof. Let S ⊂ R be a nonempty set bounded from above. Thus the set B of upper
bounds of S is nonempty. Define A ⊂ Q by A =

⋂
(C,D)∈B C. Thus a ∈ A iff for every

(C,D) ∈ B, a ∈ C. Define B = Q − A (=
⋃

(C,D)∈BD). We will show that (i) (A,B)

is a cut; (ii) its normalization (Â, B̂) is an upper bound for S, and (iii) that there is no
smaller upper bound of S.

First, B is nonempty because it is a union of nonempty sets. To see that A is
nonempty, let (C ′, D′) ∈ S (this uses nonemptiness of S) and let c ∈ C ′ (this uses
nonemptiness of C ′). If (C,D) ∈ B, then by exercise 13, C ′ ⊂ C, so c ∈ C. Hence c
lies in every C for which (C,D) ∈ B, so c ∈ A. Thus, both A and B are nonempty. By
definition, they are complements of each other. Next, suppose a ∈ A, b ∈ B. Then a ∈ C
for every (C,D) ∈ B, and b ∈ D2 for some (C,D) ∈ B. Select such a (C,D) with b ∈ D.
Then a ∈ C, so, since (C,D) is a cut, a < b. Hence (A,B) is a cut, establishing (i) above.

Turning to (ii), the argument above that A is nonempty actually shows that A con-
tains every element c for which there exists (C ′, D′) ∈ S with c ∈ C ′. Hence, Â ⊃ A ⊃ C ′

for whenever (C ′, D′) ∈ S, which by exercise 13 says x ≤ (Â, B̂) for every x ∈ S. Thus
(Â, B̂) is an upper bound for S.

Finally, we establish (iii). Suppose y = (C,D) ∈ R is an upper bound for S. Then,
by definition of B, A ⊂ C. Suppose that A 6= Â. Then B has a minimal element bmin,
which is the maximal element of Â. Thus if Â is not contained in C, then (A,B) is not
normalized and bmin /∈ C. Hence, by exercise 2, C contains no element ≥ bmin, and hence
is contained in {a ∈ Q | a < bmin}, which is precisely A (since it is the complement of B).
Thus C ⊂ A and A ⊂ C, implying C = A (hence D = B also), which is a contradiction
since (C,D) is normalized and (A,B) is not.

Therefore Â = A, and hence Â ⊂ C, implying (Â, B̂) ≤ y. Thus (Â, B̂) is ≤ every
upper bound of S, and we are done.
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