Constructing R from Q: Dedekind cut approach

The treatment below is adapted from the one in Avner Friedman's text Advanced Calculus.

Definition 1. A (Dedekind) cut is an ordered pair of subsets of $\mathbf{Q},(A, B)$, satisfying
(i) A and B are both nonempty;
(ii) A and B are complements of one another (in \mathbf{Q}); and
(iii) $a<b$ for all $a \in A, b \in B$.

If (A, B) is a cut, we will refer to a maximal element of A (if one exists) and a minimal element of B (if one exists) as extremal elements.

Examples.

1. $A=\{x \in \mathbf{Q} \mid x \leq 1\}, B=\{x \in \mathbf{Q} \mid x>1\}$. In this example, A has an extremal element but B has does not.
2. $A=\{x \in \mathbf{Q} \mid x<1\}, B=\{x \in \mathbf{Q} \mid x \geq 1\}$. In this example B has an extremal element but A does not.
3. $A=\{x \in \mathbf{Q} \mid x \leq 0\} \cup\left\{x \in \mathbf{Q} \mid x>0\right.$ and $\left.x^{2}<2\right\}, B=\left\{x \in \mathbf{Q} \mid x>0\right.$ and $\left.x^{2} \geq 2\right\}$. In this example neither A nor B has an extremal element.

The first exercise below shows that, with regard to extremal elements, every cut is of one of the types in the three examples above.

Exercises. Be careful in doing the exercises in this handout that you do not use any of the results in Rosenlicht whose proofs were based on the least-upper-bound property of the real numbers. The purpose of this handout is to show that there exists an ordered field with the LUB property; we can't assume that such an object exists in order to prove that such an object exists. However, you may find yourself wanting to use the analogs of some of Rosenlicht's LUB 1 through LUB 5 statements, with the reals replaced by the rationals. If so, supply a proof (for the rationals) of any such statement, remembering that \mathbf{Q} does not have the LUB property.

1. Let (A, B) is a cut. Prove if one of the sets A, B has an extremal element, the other does not.
2. Let (A, B) be a cut. Prove that $A=\{x \in \mathbf{Q} \mid x<b \forall b \in B\}$ and that $B=\{x \in$ $\mathbf{Q} \mid x>a \forall a \in A\}$.
3. Let (A, B) be a cut. (a) Prove that if $x \in A$, then A contains every rational number $\leq x$. (b) Prove that if $x \in B$, then B contains every rational number $\geq x$.
4. Let (A, B) be a cut. Prove that for all positive $\epsilon \in \mathbf{Q}$, there exist $a \in A, b \in B$ such that $b-a<\epsilon$.

Definition 2. A cut (A, B) is called normalized if B does not contain a minimal element. If (A, B) is a cut we define the normalization of (A, B) to be the cut $(\widehat{A}, \widehat{B})$ defined as follows: (i) if (A, B) is normalized, then $\widehat{A}=A, \widehat{B}=B$; and (ii) if (A, B) is not normalized, then $\widehat{A}=A \cup\left\{b_{\min }\right\}, \widehat{B}=B-\left\{b_{\min }\right\}$, where $b_{\min }$ is the minimal element of B.

Definition 3. A real number is a normalized cut. The set of real numbers is denoted \mathbf{R}. A real number (A, B) is called rational if A contains a maximal element, and irrational otherwise. (Note: The term "rational number" in these notes will always mean "element of \mathbf{Q} ". To refer to a rational element of \mathbf{R}, we will use the phrase "rational real number" or "rational cut".)
Notation. Let $\iota: \mathbf{Q} \rightarrow \mathbf{R}$ be the map defined by $\iota(q)=\left(A_{q}, B_{q}\right)$, where $A_{q}=\{x \in \mathbf{Q} \mid$ $x \leq q\}$ and $B_{q}=\{x \in Q \mid x>q\}$.

Exercise.

5. Prove that ι is a 1-1 correspondence between \mathbf{Q} and the set of rational real numbers.

Definition 4. The real number $\mathbf{0}$ is $\iota(0)$, where ι is as in Exercise 5. The real number 1 is $\iota(1)$. A real number (A, B) is called negative if $0 \in B$, nonnegative if $0 \in A$, and positive if A contains a positive rational number.

Notation. For $A \subset \mathbf{Q}$, let $-A=\{-a \mid a \in A\}$.

Exercises.

6. Let $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)$ be cuts. Define $A_{3}=\left\{x \in \mathbf{Q} \mid \exists a_{1} \in A_{1}, a_{2} \in A_{2}\right.$ such that $x \leq$ $\left.a_{1}+a_{2}\right\}, B_{3}=\mathbf{Q}-A_{3}$. Prove that $\left(A_{3}, B_{3}\right)$ is a cut.
7. Prove that if (A, B) is a cut, then $(-B,-A)$ is a cut, and that $(\widehat{A}, \widehat{B})$ is positive if and only if $(\widehat{-B}, \widehat{-A})$ is negative.
8. Prove that every real number is either $\mathbf{0}$, positive, or negative, and that the cases are mutually exclusive.

We next need to endow \mathbf{R} with the operations of addition and multiplication. Intuitively, we do this by seeing how, for rational numbers q, r, the cuts $\iota(q+r)$ and $\iota(q r)$ are related to the cuts $\iota(q), \iota(r)$. We then turn these relations into the definitions of addition and multiplication of arbitrary normalized cuts (as opposed to the just the rational normalized cuts).

Definition 5. Let $x=\left(A_{1}, B_{1}\right), y=\left(A_{2}, B_{2}\right)$ be normalized cuts. The real number $x+y$ is defined to be ($\widehat{A_{3}}, \widehat{B_{3}}$), the normalization of the cut $\left(A_{3}, B_{3}\right)$ defined in Exercise 1. (The reason for not simply defining $x+y=\left(A_{3}, B_{3}\right)$ is that for some irrational choices of x, y, but not all, the cut (A_{3}, B_{3}) will not be normalized.)

Exercise.

9. Let $x=\left(A_{1}, B_{1}\right), y=\left(A_{2}, B_{2}\right)$ be normalized cuts. (a) If x, y are both non-negative, define $A_{3}=\left\{x \in \mathbf{Q} \mid \exists a_{1} \in A_{1}, a_{2} \in A_{2}, a_{1} \geq 0, a_{2} \geq 0\right.$ such that $\left.x \leq a_{1} a_{2}\right\}, B_{3}=$ $\mathbf{Q}-A_{3}$. (b) If x is nonnegative and y is negative, define $A_{3}=\left\{x \in \mathbf{Q} \mid \exists b_{1} \in B_{1}, a_{2} \in\right.$ A_{2}, such that $\left.x \leq b_{1} a_{2}\right\}, B_{3}=\mathbf{Q}-A_{3}$. (c) If x is negative and y is nonnegative, define $A_{3}=\left\{x \in \mathbf{Q} \mid \exists a_{1} \in A_{1}, b_{2} \in B_{2}\right.$, such that $\left.x \leq a_{1} b_{2}\right\}, B_{3}=\mathbf{Q}-A_{3}$. (d) If x, y are both negative, define $B_{3}=\left\{x \in \mathbf{Q} \mid \exists a_{1} \in A_{1}, a_{2} \in A_{2}\right.$, such that $x \geq$ $\left.a_{1} a_{2}\right\}, A_{3}=\mathbf{Q}-B_{3}$.
Show that in all four cases, $\left(A_{3}, B_{3}\right)$ is a cut.
Definition 6. Let $x=\left(A_{1}, B_{1}\right), y=\left(A_{2}, B_{2}\right)$ be normalized cuts. Define $x \cdot y=\left(\widehat{A_{3}}, \widehat{B_{3}}\right)$, the normalization of the cut $\left(A_{3}, B_{3}\right)$ defined in Exercise 9.

Exercises.

10. Prove that for all $a, b \in \mathbf{Q}, \iota(a+b)=\iota(a)+\iota(b)$ and $\iota(a b)=\iota(a) \cdot \iota(b)$.
11. Prove that \mathbf{R}, with the operations,$+ \cdot$, the additive identity $\mathbf{0}$, and the multiplicative identity 1, satisfies field properties I-IV on p. 16 of Rosenlicht.
12. For all $x \in \mathbf{R}$ and nonzero $y \in \mathbf{R}$, figure out how define the elements $-x$ and y^{-1} appropriately, and prove that the field property V on p. 16 of Rosenlicht is satisfied.
13. Prove that $\iota(-a)=-\iota(a)$ for all $a \in \mathbf{Q}$ and that $\iota\left(a^{-1}\right)=\iota(a)^{-1}$ for all nonzero $a \in \mathbf{Q}$.
14. Combining exercises 11 and 12, we have now shown that \mathbf{R} is a field. What is it that exercises 5,10, and 13, together with Definition 4, say about the relationship of \mathbf{Q} to \mathbf{R} ?

Definition 7. Let \mathbf{R}_{+}denote the set of positive real numbers, and let \mathbf{R}_{-}denote the set of negative real numbers.

Exercises.

15. Prove that $\iota\left(\mathbf{Q}_{+}\right) \subset \mathbf{R}_{+}$and $\iota\left(\mathbf{Q}_{-}\right) \subset \mathbf{R}_{-}$.
16. Prove that \mathbf{R} has the order property (as defined on p. 19 of Rosenlicht).
17. Define $<,>$, etc. as on p. 19 of Rosenlicht. Prove that if $x=\left(A_{1}, B_{1}\right) \in \mathbf{R}$ and $y=\left(A_{2}, B_{2}\right) \in \mathbf{R}$, then $x \leq y$ iff $A_{1} \subset A_{2}$.

Finally, we have the theorem we've been waiting for:
Theorem. R has the Least Upper Bound property.

Proof. Let $S \subset \mathbf{R}$ be a nonempty set bounded from above. Thus the set \mathcal{B} of upper bounds of S is nonempty. Define $A \subset \mathbf{Q}$ by $A=\bigcap_{(C, D) \in \mathcal{B}} C$. Thus $a \in A$ iff for every $(C, D) \in \mathcal{B}, a \in C$. Define $B=\mathbf{Q}-A\left(=\bigcup_{(C, D) \in \mathcal{B}} D\right)$. We will show that (i) (A, B) is a cut; (ii) its normalization $(\widehat{A}, \widehat{B})$ is an upper bound for S, and (iii) that there is no smaller upper bound of S.

First, B is nonempty because it is a union of nonempty sets. To see that A is nonempty, let $\left(C^{\prime}, D^{\prime}\right) \in S$ (this uses nonemptiness of S) and let $c \in C^{\prime}$ (this uses nonemptiness of $\left.C^{\prime}\right)$. If $(C, D) \in \mathcal{B}$, then by exercise $13, C^{\prime} \subset C$, so $c \in C$. Hence c lies in every C for which $(C, D) \in B$, so $c \in A$. Thus, both A and B are nonempty. By definition, they are complements of each other. Next, suppose $a \in A, b \in B$. Then $a \in C$ for every $(C, D) \in \mathcal{B}$, and $b \in D_{2}$ for some $(C, D) \in \mathcal{B}$. Select such a (C, D) with $b \in D$. Then $a \in C$, so, since (C, D) is a cut, $a<b$. Hence (A, B) is a cut, establishing (i) above.

Turning to (ii), the argument above that A is nonempty actually shows that A contains every element c for which there exists $\left(C^{\prime}, D^{\prime}\right) \in S$ with $c \in C^{\prime}$. Hence, $\widehat{A} \supset A \supset C^{\prime}$ for whenever $\left(C^{\prime}, D^{\prime}\right) \in S$, which by exercise 13 says $x \leq(\widehat{A}, \widehat{B})$ for every $x \in S$. Thus $(\widehat{A}, \widehat{B})$ is an upper bound for S.

Finally, we establish (iii). Suppose $y=(C, D) \in \mathbf{R}$ is an upper bound for S. Then, by definition of $B, A \subset C$. Suppose that $A \neq \widehat{A}$. Then B has a minimal element $b_{\text {min }}$, which is the maximal element of \widehat{A}. Thus if \widehat{A} is not contained in C, then (A, B) is not normalized and $b_{\min } \notin C$. Hence, by exercise $2, C$ contains no element $\geq b_{\text {min }}$, and hence is contained in $\left\{a \in \mathbf{Q} \mid a<b_{\min }\right\}$, which is precisely A (since it is the complement of B). Thus $C \subset A$ and $A \subset C$, implying $C=A$ (hence $D=B$ also), which is a contradiction since (C, D) is normalized and (A, B) is not.

Therefore $\widehat{A}=A$, and hence $\widehat{A} \subset C$, implying $(\widehat{A}, \widehat{B}) \leq y$. Thus $(\widehat{A}, \widehat{B})$ is \leq every upper bound of S, and we are done.

