Constructing \mathbf{Z} from \mathbf{N}

In these notes we will construct a set \mathbf{Z} which will have all the familiar properties the integers. Since our purpose here is to construct the integers, and prove they have certain properties, we must be careful not to assume ahead of time that they have these properties.

In our past work we have constructed the natural numbers \mathbf{N} (assuming the Peano Axioms) and shown that these numbers behave the way we expect. We can therefore base our construction of \mathbf{Z} on the properties we have proven to be true of \mathbf{N}.

Define $X=\mathbf{N} \times \mathbf{N}$. Define a relation on X by declaring $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$ iff $m+n^{\prime}=n+m^{\prime}$. (Note: my "thought process" here is that I'm thinking of (m, n) as $m-n$, and I want the two ordered pairs above to be equivalent if $m-n=m^{\prime}-n^{\prime}$. The definition chosen is a sneaky way to get around the fact that we haven't defined $m-n$ if $m \leq n$; we haven't defined zero or negative numbers. My "thought process" is purely motivation; it cannot be used to justify any steps in a proof.)

Exercises

1. Prove that \sim is an equivalence relation.
2. Prove that $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$ iff $(m+p, n+p) \sim\left(m^{\prime}+p, n^{\prime}+p\right) \forall p \in \mathbf{N}$.
3. Prove that if $(m, p) \sim(n, p)$, or if $(p, m) \sim(p, n)$, then $m=n$.
4. Determine all elements of X that are equivalent to $(1,1)$.

Definition. Define an operation + on X by $(m, n)+\left(m^{\prime}, n^{\prime}\right)=\left(m+m^{\prime}, n+n^{\prime}\right)$.

Exercise

5. Prove that if $a, b, a^{\prime}, b^{\prime} \in X$ and $a \sim a^{\prime}, b \sim b^{\prime}$, then $a+b \sim a^{\prime}+b^{\prime}$.

Definition and notation. Let \mathbf{Z} denote the set of equivalence classes determined by \sim. Write $[(m, n)]$ for the equivalence class of (m, n); thus $[(m, n)]=\left[\left(m^{\prime}, n^{\prime}\right)\right]$ iff $m+n^{\prime}=n+m^{\prime}$. Define $0=[(1,1)]$. Define an operation + on \mathbf{Z} as follows. Given $a, b \in \mathbf{Z}$, there exist $m, n, p, q \in \mathbf{N}$ such that $a=[(m, n)], b=[(p, q)]$. Consider $[(m, n)+(p, q)]$. The numbers m, n, p, q are not uniquely determined by a, b; however, if we choose any other numbers $m^{\prime}, n^{\prime}, p^{\prime}, q^{\prime}$ such that (m^{\prime}, n^{\prime}) and (p^{\prime}, q^{\prime}) represent the same equivalence classes as (m, n) and (p, q) respectively (i.e. $\left[\left(m^{\prime}, n^{\prime}\right)\right]=a,\left[\left(p^{\prime}, q^{\prime}\right)\right]=b$), then by Exercise $5,\left[\left(m^{\prime}, n^{\prime}\right)+\left(p^{\prime}, q^{\prime}\right)\right]=[(m, n)+(p, q)]$. Thus this final equivalence class depends only on the equivalence classes a and b, not on the choices of elements of X we choose to represent
these classes. Hence we can take the following equation as the definition of an operation + on \mathbf{Z} :

$$
[(m, n)]+[(p, q)]=[(m+p, n+q)] \quad(=[(m, n)+(p, q)]) \quad \forall m, n, p, q \in \mathbf{N} .
$$

(We say that the + on the left is well-defined by this equation.) We will refer to + as addition on both \mathbf{N} and \mathbf{Z}. (Note: we now have three distinct binary operations labeled " + ": one on \mathbf{N}, one on X, and one on \mathbf{Z}. As long as we are careful to use the plus sign only between two elements of \mathbf{N}, between two elements of X, or between two elements of \mathbf{Z}, the context eliminates any ambiguity in the meaning. Of course, we must be careful not to put the plus sign between an element of one of the sets $\mathbf{N}, X, \mathbf{Z}$, and an element of a different one of these sets, since such an operation would have no meaning.)

Exercises.

6. Prove that addition in \mathbf{Z} is commutative and associative.
7. Prove that $a+0=a, \forall a \in \mathbf{Z}$.
8. Prove that for all $a \in \mathbf{Z}$, there exists a unique $b \in \mathbf{Z}$ such that $a+b=0$. Henceforth let $-a$ denote the b of the previous sentence. If $(m, n) \in X$ represents a, what is an obvious representative for $-a$? Prove that $-(-a)=a$.
9. Prove that for all $a, b \in \mathbf{Z}$, there exists a unique $x \in \mathbf{Z}$ such that $a+x=b$. Henceforth denote the x of the previous sentence by $b-a$. Prove that $0-a=$ $-a, \forall a \in \mathbf{Z}$.

We are used to thinking of the natural numbers as a subset of the integers. To see that our model for the integers, \mathbf{Z}, is consistent with this way of thinking, define a function $f_{+}: \mathbf{N} \rightarrow \mathbf{Z}$ by $f(n)=[(n+1,1)]$, and define a subset $\mathbf{Z}_{+} \subset \mathbf{Z}$, to be called the positive integers, by $\mathbf{Z}_{+}=\operatorname{image}\left(f_{+}\right)$

Exercises.

10. Prove that f_{+}is injective, and hence gives a bijection between \mathbf{N} and \mathbf{Z}_{+}.

We use the bijection f_{+}to endow \mathbf{Z}_{+}with a successor function. Specifically, for $a \in \mathbf{Z}_{+}$, there is a unique $n \in \mathbf{N}$ such that $f_{+}(n)=a$; we call this n " $f_{+}^{-1}(a)$ ". Then we can define $s^{\prime}: \mathbf{Z}_{+} \rightarrow \mathbf{Z}_{+}$by $s^{\prime}(a)=f_{+}\left(s\left(f_{+}^{-1}(a)\right)\right)$ (where s is the successor function on \mathbf{N}).

Exercises

11. What is the (unique) element $1^{\prime} \in \mathbf{Z}_{+}$that has no predecessor?
12. Show that for $a \in \mathbf{Z}_{+}, s^{\prime}(a)=a+1^{\prime}$, where in this equation " + " is the operation on \mathbf{Z} we defined above.
13. Understand why \mathbf{Z}_{+}is "essentially the same" as \mathbf{N}. Thus f_{+}is a "dictionary" (the technical term is "isomorphism") enabling us to translate statements about \mathbf{N} into equivalent statements about \mathbf{Z}_{+}.
14. Prove that for all $a \in \mathbf{Z}$, exactly one of the following statements is true: (i) $a \in \mathbf{Z}_{+}$; (ii) $a=0$; or (iii) $-a \in \mathbf{Z}_{+}$.

We still need to define multiplication on \mathbf{Z}. Our definition should extend what we already have defined to be multiplication on \mathbf{Z}_{+}(i.e. on \mathbf{N}); the product of two positive integers should not be different from what we get by viewing these integers as natural numbers.

Definition. Define an operation $*$ on X by

$$
(m, n) *(p, q)=(m p+n q, m q+n p) .
$$

Exercise

15. Prove that if $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$ and $(p, q) \sim\left(p^{\prime}, q^{\prime}\right)$, then $(m, n) *(p, q) \sim\left(m^{\prime}, n^{\prime}\right) *$ $\left(p^{\prime}, q^{\prime}\right)$.

As a result of exercise 15, the following formula gives a well-defined operation \cdot, which we will call multiplication, on \mathbf{Z} :

$$
[(m, n)] \cdot[(p, q)]=[(m p+n q, m q+n p)] .
$$

Exercises

16. Prove that multiplication on \mathbf{Z} is associative and commutative, and that it distributes over addition.
17. Let $\mathbf{1}=f_{+}(1)$ (where $f_{+}: \mathbf{N} \rightarrow \mathbf{Z}$ is as on the previous page). Prove that for all $a \in \mathbf{Z}$ we have $a \cdot \mathbf{1}=a$, and that $\mathbf{1}$ is the unique element of \mathbf{Z} with this property.
18. Prove that for all $a \in \mathbf{Z}, \quad a \cdot 0=0$. Also prove that if $a, b \in \mathbf{Z}$ and $a \cdot b=0$, then $a=0$ or $b=0$.
