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Establishing some familiar properties of the natural numbers

By working through the exercises below you will establish that any set N obeying
the Peano axioms has the usual properties of the natural number system. Do not assume
ahead of time that such a set has any other properties besides those explicitly assumed
in the Peano axioms (for instance, don’t assume N is the set of natural numbers, even
though that’s what we eventually have in mind). The purpose of these exercises is to use
the Peano axioms to derive the usual properties of arithmetic; you have to avoid circular
reasoning. For example, you can’t make use of notions like “less than” or “the first n
elements of N” until these have been defined in a non-circular way.

The exercises are interspersed with some definitions, some discussion, and with some
of the trickier proofs. In some cases the definitions only make sense because of the
statement in a preceding exercise. Whenever specific numerals 2,3,4, or 5 appear, they
have the meaning you would expect: 2 = s(1), 3 = s(2), etc.

Exercises

1. Prove that the element “1” in the Peano axioms is unique (i.e. that there is only
one element that is not the successor of any element).

2. Prove that no n ∈ N satisfies s(n) = n.

3. Prove that for all n ∈ N with n 6= 1, there exists a unique m ∈ N with s(m) = n.

Definition 1. For each n ∈ N with n 6= 1, the predecessor of n is the unique m ∈ N
with s(m) = n. Let pre(n) denote the predecessor of n.

Exercises

4. By Definition 1, s(pre(n)) = n for all n 6= 1. Show that pre(s(n)) = n for all n ∈ N
as well.

5. Prove that there exists no nonempty subset A ⊂ N with the property that the
predecessor of every element of A exists and lies in A.

We would next like to come up with a definition of the set that we are accustomed to
writing as “{1, 2, . . . , n}”, where n is an unspecified element of N. As yet this notation has
no meaning, since we have no definition of “. . . ”. We cannot get around this by declaring
“{1, 2, . . . , n}” to mean “the first n elements of N” since we have no definition of the
latter phrase yet either. Without a clear definition of such a set, even our definition of
“finite set” makes no sense, since we defined a nonempty finite set to be one that could be
put into one-to-one correspondence with a set of the form “{1, 2, . . . , n}”. The “obvious”
way around these problems is to try something like the following:
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1. Define I1 = {1}.
2. For n ∈ N, if the set In has been defined, define Is(n) = In

⋃
{s(n)}.

The trouble with this definition is that “has been defined” makes implicit reference to a
notion of time, which does not appear anywhere in the Peano axioms, and of which all
properties of N should be independent.

I encourage you to try to come up with a way to define the set “{1, 2, . . . , n}” that
does not use any as-yet undefined notions such as “greater than”, “less than”, or “do
something n times”. After you’ve tried, continue reading; perhaps you will have come up
with a better solution than the one below.

Definition 2. For n ∈ N, a subset I ⊂ N is an initial interval of length n if it satisfies
the following conditions.

• (I1n) 1 ∈ I and n ∈ I.

• (I2n) n is the unique element of I whose successor is not in I.

• (I3n) If m ∈ I and m 6= 1, then the predecessor of m is in I.

Note also that we cannot yet refer to “the initial interval of length n”, since such
terminology implicitly assumes both existence and uniqueness of an initial interval of
length n. The next lemma and its corollary will fill this gap.

Lemma 1 (a) If n ∈ N and I is an initial interval of length n, then I
⋃
{s(n)} is an

initial interval of length s(n)
(b) If n ∈ N, n 6= 1, and I is an initial interval of length n, then I −{n} is an initial

interval of length pre(n).

Proof: (a) Let n ∈ N, let I be an initial interval of length n, and let I+ = I
⋃
{s(n)}.

Then 1 ∈ I+ and s(n) ∈ I+, so I+ satisfies condition I1s(n).
To establish condition I2s(n) we must show two things: (i) s(s(n)) /∈ I+, and (ii)

s(m) ∈ I+ for all m ∈ I+ other than s(n). If s(s(n)) ∈ I+ then s(s(n)) ∈ I, since the
possibility “s(s(n)) = s(n)” is ruled out by Exercise 2. But s(s(n)) 6= 1 since 1 is not
the successor of any element, so condition I3n implies pre(s(s(n))) ∈ I. By Exercise 4 this
implies s(n) ∈ I, contradicting I2n. Hence statement (i) is true. As for (ii), if m ∈ I+ and
m 6= s(n) then m ∈ I. If m = n then s(n) ∈ I+ by definition of I+, while if m 6= n then
s(m) ∈ I (and hence s(m) ∈ I+) by condition I2n. Therefore (ii) is true, and I+ satisfies
condition I2s(n).

Next, let m ∈ I+,m 6= 1. If m = s(n) then pre(m) = n ∈ I, while if m 6= s(n) then
m ∈ I, and therefore condition I3n implies that pre(m) ∈ I. Since I ⊂ I+, in either case
we have pre(m) ∈ I+. Thus I+ satisfies condition I3s(n), and therefore is an initial interval
of length n.
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(b) Let n ∈ N, n 6= 1, let I be an initial interval of length n, and let I− = I − {n}.
Then 1 ∈ I, so 1 ∈ I− (the removed element 1 is 6= n by hypothesis). By condition I3n
we have pre(n) ∈ I and (by Exercise 2) n 6= pre(n), so pre(n) ∈ I − {n} = I−. Thus I−
satisfies Condition I1pre(n).

By definition of I−, s(pre(n)) = n /∈ I−. If m ∈ I− and m ∈ I and m 6= n, so
s(m) ∈ I, and therefore s(m) ∈ I− unless s(m) = n, i.e. unless m = pre(n). Thus I−
satisfies Condition I2pre(n).

Finally, if m ∈ I− and m 6= 1, then m ∈ I, so pre(m) ∈ I by I3n, and therefore
pre(m) ∈ I− unless pre(m) = n. But if pre(m) = n then m = s(n) /∈ I, and hence
m /∈ I−. Thus for all m ∈ I−, if m 6= 1 then s(m) ∈ I−; i.e. I− satisfies condition I3pre(n).

Corollary 2 For all n ∈ N there exists a unique initial interval In of length n, and
Is(n) = In

⋃
{s(n)}.

Proof: Observe that {1} is an initial interval of length 1. Let I be an interval of length
1 and let M1 = 1

⋃
C(I), where “C” denotes complement. Then 1 ∈ M1 and s(1) /∈ I, so

s(1) ∈ M1. If n ∈ M1 and n 6= 1 then s(n) ∈ M1, for otherwise we would have s(n) ∈ I,
implying pre(s(n)) ∈ I (by condition I31 ), implying n ∈ I, implying the contradiction
n /∈ M1. By induction, M1 = N, implying that C(I) = C({1}), and therefore that
I = {1}.

Let M = {n ∈ N : ∃ unique initial interval of length n}. We have just shown that
1 ∈ M . Suppose n ∈ M , and let In be the unique initial interval of length n. Then by
Lemma 1, part (a), In

⋃
{s(n)} is an initial interval of length s(n). Suppose there were

two initial intervals I, I ′ of length s(n). Then by part (b) of the lemma, both I − {s(n)}
and I ′ − {s(n)} would be initial intervals of length n, but since In is unique this would
imply I − {s(n)} = I ′ − {s(n)}, and hence I = I ′. Thus In

⋃
{s(n)} is the unique initial

interval of length s(n), so s(n) ∈M . By induction, M = N, and we are done.

Henceforth the initial interval of length n will also be called the set of the first n
elements of N. We define the notation “{1, . . . , n}”, or “{1, 2, . . . , n}”, etc., to mean In.

Remark. It may seem at first that condition I3n in Definition 2 is redundant, but it is
not. Were we to require only conditions I1n and I2n, there would be infinitely many initial
intervals of length 1. For example {1}

⋃
{3, 4, 5. . . .} (i.e. C({2}), where 2 = s(1)) would

be such a set; more generally for any n 6= 1, {1}
⋃
C(In) satisfies the first two conditions

for an initial interval of length 1.

In Lemma 1 we used induction to define the sets In, the critical step being the
construction of Is(n) from In. Such a use of induction to define some collection of sets,
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functions, numbers, or other objects indexed by n ∈ N, is called recursion. Usually this is
done more informally, as in our “time-dependent” first attempt at the definition of the In.
Now that we have defined the sets In properly (using Corollary 2) we can handle recursion
cleanly. This is important because we will later use recursion to help define addition and
multiplication.

Proposition 3 Let X be any nonempty set, let f : N ×X → X, and let g1 ∈ X. Then
there exists a unique function g : N→ X satisfying

(i) g(1) = g1, and
(ii) g(s(n)) = f(s(n), g(n)) for all n ∈ N.

We will prove this shortly, but first, to understand what this has to do with recursion,
consider these examples. To make the illustrations clearer, I’ll assume in these examples
that N has all the properties we know and love about the natural numbers.

1. X = N, f(n,m) = nm, g1 = 1. Then the function g given by the Proposition
satisfies g(n+ 1) = (n+ 1)g(n) = (n+ 1)n g(n−1) = . . . = (n+ 1) ·n · . . . ·2 · g(1) =
(n + 1)!. Thus we construct the function “factorial”.

2. X = P (N) (the power set of N), g1 = {1}, f(n,A) = A
⋃
{n}. Then g(1) = {1} =

I1, g(2) = I1
⋃
{2} = I2, g(3) = I2

⋃
{3} = I3, . . . . Thus g(n) = In for all n. This

example illustrates the usefulness of recognizing that a collection of sets indexed by
N can be viewed as a function whose domain is N.

Although the second example is a useful illustration of what Proposition 3 has to do
with recursion in general, we will use our previous construction of the sets In to prove
Proposition 1 3, so we cannot literally use Proposition 3 to construct the In. The examples
are meant to illustrate what role the function f plays: it’s the rule by which we combine
a “new” number s(n) with a “previously defined” object g(n) to produce a “new” object
g(s(n)). (I’ve put quotes around the terms that implicitly refer to time.)

Proof of Proposition 3. Let M be the set of those m ∈ N for which there exists
a unique function hm : Im → X satisfying the conditions (am) hm(1) = g1 and (bm)
hm(s(n)) = f(s(n), hm(n)) whenever s(n) ∈ Im. The function g(1) : I1 → X defined
by g(1)(1) = g1 satisfies conditions (a1) and (b1)—the second condition vacuously—and
is the only function from I1 to X satisfying condition (a1), so 1 ∈ M . Suppose that
m ∈ M , and let hm : Im → X be the unique function satisfying (am) and (bm). Define
hs(m) : Is(m) → X by

hs(m)(n) =

{
hm(n) if n ∈ Im
f(s(m), hm(m)) if n = s(m)

Then hs(m) satisfies (as(m)) and (bs(m)). If h′ : Is(m) → X is another function satisfying
these conditions, then the restriction of h′ to Im satisfies (am) and (bm), so (by the
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uniqueness statement in the definition of M), the restriction of h′ to Im equals hm. Thus
for n ∈ Im we have h′(n) = hm(n) = hs(m)(n), while if n = s(m) we have h′(n) =
h′(s(m)) = f(s(m), h′(m)) = f(s(m), hm(m)) = hs(m)(n) as well. Thus h′ = hs(m) and
hs(m) is the unique function from Is(m) to X satisfying (as(m)) and (bs(m)). Therefore
s(m) ∈M , so by induction M = N.

Define g : N → X by g(m) = hm(m). By property (bs(m)) we have g(s(m)) =
hs(m)(s(m)) = f(s(m), hs(m)(m)) = f(s(m), hm(m)) [because the restriction of hs(m) to
Im is hm] = f(s(m), g(m)). Therefore g satisfies condition (ii) in the statement of the
proposition, and clearly also satisfies condition (i). Let g′ be any other function satisyfing
these conditions, and let M ′ = {m ∈ N : g(m) = g′(m)}. Then 1 ∈ M ′, and if m ∈ M ′,
condition (ii) implies that g′(s(m)) = g(s(m)), so s(m) ∈ M ′. Therefore M ′ = N, so
g′ = g; i.e. g is the unique function satisfying (i) and (ii).

We are now (almost) ready to define addition and multiplication. Intuitively, what we
want to do for addition is clear. Addition by 1 should correspond to the successor function;
addition by 2 should correspond to applying the successor function twice; addition by n
should correspond to applying the successor n times. The trouble is, how do we define “do
something n times” when n is not specified, without using circular definitions? Recursion
comes to the rescue, in the special form of iteration.

Definition. Let Y be any nonempty set, let X be the set of functions from Y to Y , let
G ∈ X and let f : N×X → X be defined by f(n, h) = G ◦ h. (Note what we are doing
here: G and h are functions from Y to itself, so their composition is another function
from Y to itself. We are in a very special case of Proposition 3 in which the function f
happens not to depend on n.) Let g : N → X be the function given by Proposition 3
with g1 = G, and for n ∈ N define Gn, the nth iterate of G, to be g(n). Thus, for every
n, Gn is a function from Y to Y . (Note: the “n” in “Gn” is just a convenient superscript,
not literally an exponent. A notation such as Gn is more convenient than g(n) in this
context since “Gn(y)” is less confusing to look at than “g(n)(y)”.)

The reason for the terminology “nth iterate” is clear if we write out what this defi-
nition tells us: G1 = G, G2 = G ◦ G, G3 = G ◦ G ◦ G etc.; thus G1(y) = G(y), G2(y) =
G(G(y)), G3(y) = G(G(G(y))) etc.

Finally we are ready for arithmetic.

Definition and Notation. For m ∈ N let m + 1 denote s(m), and if m 6= 1 let m − 1
denote pre(m). For n ∈ N, let sn be the nth iterate of the function s : N→ N, and define
define m+n = sn(m) for all m,n ∈ N. (Warning: the definition of n+m is sm(n), which
is not the same as the definition of m+ n. Later you will prove that m+ n = n+m, but
until you do, don’t assume it.) We define relations <,≤, >, and ≥ on N as follows. Let
m,n ∈ N. (i) We say m < n iff there exists k ∈ N with n = sk(m). (ii) We say m ≤ n iff
m < n or m = n. (iii) We say m > n iff n < m. (iv) We say m ≥ n iff n ≤ m.
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The order in which most of the remaining exercises appear is not random. In several
cases an earlier exercise is needed to do a later one; if you get stuck, you will not be able
to get un-stuck by assuming the result of a later exercise to do an earlier one.

Exercises.

6. Prove that m ≤ n iff m ∈ In.

7. Prove that for all m,n ∈ N, exactly one of the following three statements is true:
(i) m < n; (ii) m = n; (iii) m > n.

8. Prove that (m + n) + 1 = m + (n + 1) for all m,n ∈ N.

9. Prove the associative law for addition: (m+n)+p = m+(n+p) for all m,n, p ∈ N.

10. Prove the generalized associative law for addition: given any finite ordered n-tuple
(m1,m2, ...,mn) of elements of N (n ≥ 3), the notation m1 + m2 + ... + mn is
unambiguous (i.e. it doesn’t matter which order the +’s are done in, so long as the
order in which the mi appear is not changed). (For example (m1+(m2+m3))+m4 =
m1 + (m2 + (m3 + m4)).)

11. Prove that for all n,m ∈ N, n + m = m + n. As a corollary, deduce that even the
order of the mi in problem 10 does not matter.

Definition and Notation. For all n ∈ N, define n · 1 = n, and for m 6= 1 define
n ·m = (n · (m − 1)) + n. (This is a recursive definition; I leave it to you to see how to
write it more formally in the terms of Proposition 3.) We refer to “+” as addition and
“·” as multiplication. Words such as add, multiply, sum, product etc. are taken to have
their usual meanings in terms of the operations “+” and “·”. We will simplify notation
in various conventional ways. For example, when using single letters (e.g. m,n) to stand
for elements of N, we will take the juxtaposition of those letters (e.g. mn) is taken to
mean m · n. We will use the familiar convention for implied order of operations when
parentheses are omitted; e.g. mn + p equals (m · n) + p, not m · (n + p).

12. Prove the left distributive law: m · (n + p) = mn + mp, ∀m,n, p ∈ N.

13. (a) Prove that multiplication in N is associative. (b) Prove the generalized associa-
tive law for multiplication (the multiplicative analog of problem 10 above).

14. Prove the right distributive law: (m + n) · p = mp + np, ∀m,n, p ∈ N.

15. Prove that multiplication in N is commutative.

16. Figure out how to define subtraction. I.e. for m,n ∈ N, with m < n, figure out how
to define n −m. Prove that (n −m) + m = n = (n + m) −m. Prove the relevant
left and right distributive laws (the analogs of problems 12 and 14).
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