
MAA 4211, Fall 2014—Assignment 6’s non-book problems

B1. Let (E, d) be a metric space, S ⊂ E. For purposes of this problem and the next,
call S non-connected if S is not connected.1 Prove that S is non-connected if and only if
S = A

⋃
B for some nonempty sets A,B ⊂ S for which A

⋂
B = ∅ = A

⋂
B. (Here A

and B denote the closures of A and B in E, not in the subspace S.)

B2. Let (E, d) be a metric space, S ⊂ E a nonempty subset, and p ∈ E. Recall
from the first midterm that the distance from p to S, written dist(p, S), is defined to be
inf{d(p, q) | q ∈ S}. On that exam you were asked to prove that dist(p, S) = 0 if and only
if p ∈ S. You may assume that fact here (there is a proof in the first-midterm solutions).

Using the result of B1, prove that S is non-connected if and only if S = A
⋃
B for

some nonempty sets A,B ⊂ S for which every point of each set is a positive distance from
the other set (i.e. dist(p,B) > 0 ∀p ∈ A and dist(p,A) > 0 ∀p ∈ B).

Motivation for this problem: Recall that, heuristically, we wanted “S is not con-
nected” to mean that S cannot be partitioned into two nonempty disjoint subsets that
“don’t touch each other”. There is no official definition of one subset of a metric space
touching, or not touching, another. However, were we (not unreasonably) to define “A
does not touch B” to mean “every point of A is a positive distance from B”, then the
characterization of non-connectedness in this problem would turn the heuristic characteri-
zation of “not connected” into a precise one that agrees with the mathematical definition.

B3. Let (E, d) be a metric space.

(a) Let p ∈ E. Show that the singleton set {p} is connected.

(b) Let p ∈ E, and let Fp = {S ⊂ E | S is connected and p ∈ S} ⊂ P (E). Let

Cp =
⋃

S∈Fp

S.

Prove that Cp is connected.
(Do not re-invent the wheel to prove this. You should need no more than a couple

of sentences, if you apply a couple of facts already proven.)

The set Cp defined above is called the connected component of p in E (or in (E, d)).
We will use the notation “Cp” with this meaning for the rest of this problem. A subset
C ⊂ E is called a connected component of E if C = Cp for some p ∈ E.

(c) For p ∈ E, prove that Cp is the largest connected set containing p, in the following
sense: if S ⊂ E is connected and p ∈ S, then S ⊂ Cp.

(d) Define a relation ∼ on E by declaring p ∼ q if and only if q ∈ Cp. Prove that
∼ is an equivalence relation, and that the equivalence classes are exactly the connected
components of E.

1Although it is tempting to use the term “disconnected” for “not connected”, topologists generally
don’t do this, instead reserving “disconnected” as one piece of the terminology for topological (sub)spaces
that fail in some spectacular way to be connected, such as totally disconnected spaces (see problem
B3(e)). The most common terminology for “not connected” is “not connected”, not “non-connected”.
In this problem I’m using “non-connected” because “S is not connected if and only if . . . ” could be
misinterpreted.
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Recall that, for any equivalence relation on a set S, the equivalence classes partition
S into pairwise disjoint subsets. (For the relation above, “pairwise disjointness” means
that for any p, q ∈ E, either Cp = Cq or Cp

⋂
Cq = ∅.) Thus a metric space is always the

disjoint union of its connected components.

(e) (E, d) is called totally disconnected if the only nonempty connected subsets of E
are the singleton sets. Prove that Q, with its usual metric, is totally disconnected.

Note: in Assignment 3, Problem B3, you effectively were proving that Q is not
connected (but “connected” was not in our mathematical vocabulary at the time). Now
you are proving something much stronger.

(f) Prove that every connected component of (E, d) is a closed subset of E. (Here
(E, d) is a general metric space again, not totally disconnected.)

(g) Use part (f) to prove that if (E, d) has only finitely many connected components,
then each connected component is both open and closed.

B4. (Same as problem B3 on Assignment 5, but done another way.) Let (E, d) be a
metric space, let {pn}∞n=1 be a convergent sequence in E, let p = limn→∞ pn, let N ∈ N,
and let ε > 0. Assume that for all n,m ≥ N , d(pn, pm) < ε. Use the appropriate half of
the “sequential characterization of continuity” to prove that d(pN , p) ≤ ε. Hint: Consider
the function f : E → R defined by f(q) = d(pN , q).

B5. In problem #3 on p. 91 of Rosenlicht, suppose you remove the hypothesis that the
sets S1, S2 are both closed. Is the conclusion still true? (Prove your answer, of course.)
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