MAA 4211, Fall 2015—Assignment 4's non-book problems

B1. Let (E, d) be a metric space, let $\{p_n\}_{n=1}^{\infty}$ be a sequence in E, and define sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ by

$$\begin{aligned} x_n &= p_{2n-1} \ \forall n \in \mathbf{N}, \\ y_n &= p_{2n} \ \forall n \in \mathbf{N}. \end{aligned}$$

(In other words, $\{x_n\}$ and $\{y_n\}$ are the subsequences of $\{p_n\}$ given by the odd-numbered terms and even-numbered terms, respectively.) Prove that the following are equivalent:

- (i) $\{p_n\}_{n=1}^{\infty}$ converges.
- (ii) Both $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ converge, and their limits are equal.

Prove also that if condition (ii) holds, then $\lim_{n \to \infty} p_n = \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.