
MAA 4211, Fall 2015—Assignment 6’s non-book problems

B1. Let R∞ denote the set of sequences in R (an element ~a ∈ R∞ is an infinite sequence
(ai)

∞
i=1 in R). The set R∞ is a vector space, with addition of vectors and multiplication

by scalars defined “componentwise”, just as we do for Rn: if ~a,~b ∈ R∞ and c ∈ R, we
define

~a+~b = (ai + bi)
∞
i=1, c~a = (cai)

∞
i=1.

The zero element ~0 of R∞ is the sequence each of whose terms is 0.
Let R∞

b ⊂ R∞ denote the subset consisting of all bounded sequences. It is not hard
to show that R∞

b is a vector subspace of R∞; you already did part of the relevant work
in doing Rosenlicht problem p. 61/#1b. The `∞ norm on R∞

b is defined by ‖~a‖∞ =
sup{|ai| : i ∈ N}. In the process of doing Rosenlicht p. 61/#1b, you also did some of
the work needed to show that ‖ ‖∞ is a norm on R∞

b .

(a) Do all the remaining work needed to show that R∞
b is a vector space (a vector

subpace of R∞), that ‖ ‖∞ is a norm on R∞
b .

The normed vector space (R∞
b , ‖ ‖∞) is denoted `∞(R). As with any normed vector

space, when we speak of metric-space properties of `∞(R), the metric is assumed to be
the one associated with the given norm (unless otherwise specified); thus the `∞ metric on

R∞
b is the function d : R∞

b ×R∞
b → R given by d(~a,~b) = d∞(~a,~b) = sup{|ai−bi| : i ∈ N}

(exactly the metric in Rosenlicht p. 61/#1b).
Since a sequence in `∞(R) is a sequence of sequences, to avoid confusion in this

problem we will use a superscript rather than a subscript to label the terms of a sequence
in `∞(R); we will write such a sequence as (~a(n))∞n=1. Thus the nth term in such a sequence

is a real-valued sequence ~a(n) = (a
(n)
i )∞i=1 = (a

(n)
1 , a

(n)
2 , a

(n)
3 , . . . ).

(b) Let (~a(n))∞n=1 be a Cauchy sequence in `∞(R). Show that for all i ∈ N, the

real-valued sequence (a
(n)
i )∞n=1 (the sequence of “ith components” of the ~a(n)) is a Cauchy

sequence in R. Note that in (a
(n)
i )∞n=1, the index i is fixed; it is n that varies: (a

(n)
i )∞n=1 =

(a
(1)
i , a

(2)
i , a

(3)
i , . . . ).

(c) Let (~a(n))∞n=1 be as in part (a). Since R is complete, for all i ∈ N there exists

ci ∈ R such that limn→∞ a
(n)
i = ci. Let ~c be the sequence (ci)

∞
i=1 ∈ R∞—no subscript

“b”, yet. Show that the sequence ~c is, in fact, bounded. (So (ci)
∞
i=1 ∈ R∞

b after all.)

(d) Let (~a(n))∞n=1 and ~c be as in part (b). Show that (~a(n))∞n=1 converges in `∞(R) to
~c. (Note: unlike for sequences in Rm, this CANNOT be deduced just from the fact that

(a
(n)
i )∞n=1 converges to ci for all i; see part (e) below.) Thus `∞(R) is complete.

Hint: For ε > 0, if N ∈ N is as in the Cauchy criterion for the sequence (~a(n))∞n=1

in `∞(R), show that for all i ∈ N, this same N “works” in the Cauchy criterion for the

real-valued sequence (a
(n)
i )∞n=1. (You probably already did this in part (b).) Then apply

a lemma proved in class on 11/13/15 to each sequence (a
(n)
i )∞n=1.

Just FYI: A complete normed vector space is called a Banach space.
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Notation for the remaining parts of this problem. For n ∈ N, let ~e(n) ∈ R∞
b

be the sequence whose nth term is 1 and all of whose other terms are zero (e.g. ~e(3) =
(0, 0, 1, 0, 0, 0, 0, . . . )).

(e) Show that for all i ∈ N, (e
(n)
i )∞n=1 converges in R to 0.

(f) Let ~0 be the zero element of R∞
b (the sequence (0, 0, 0, 0 . . . )). Compute d(~e(n),~0)

for all n, and use your answer to show that (~e(n))∞n=1 does not converge in `∞(R) to ~0,

even though the ith-component sequence (e
(n)
i )∞n=1 converges to the ith component of ~0 for

all i.

(g) Compute d(~e(n), ~e(m)) for all m,n ∈ N,m 6= n. Use your answer to show that
no subsequence of (~e(n))∞n=1 can be Cauchy. Use this to deduce that no subsequence of
(~e(n))∞n=1 can converge.

Note: since any sequence is trivially a subsequence of itself, the last conclusion implies
that (~e(n))∞n=1 does not converge in `∞(R) to anything, so, in particular, it does not
converge to ~0. But I still want you to do part (f) by the method indicated in part (f).)

(h) Use part (g) to deduce that the closed unit ball B1(~0) ⊂ `∞(R) is not sequentially
compact.

Remark. Thus, by parts (d) and (h),B1(~0) ⊂ `∞(R) is a closed, bounded
subset of a complete normed vector space, yet is not sequentially compact,
hence is not compact (or totally bounded). The Heine-Borel Theorem (one
version of which asserts that closed, bounded subsets of Rm, with respect to
the metric given by any norm, are compact), which we have proven for any
norm on Rm equivalent to the `∞ norm, does not extend to infinite-dimensional
vector spaces.

Problems B2 and B3 are intended to help you better relate the definition
of “connected subset of a metric space” to the intuitive notion of what it
sounds like this terminology ought to mean.

B2. Let (E, d) be a metric space, S ⊂ E. Prove that the following are equivalent:

(i) S is not connected.

(ii) There exist nonempty subsets A,B ⊂ S for which S = A
⋃
B and for which

A
⋂
B = ∅ = A

⋂
B. (Here A and B denote the closures of A and B in E, not in

the subspace S.)

Some things to note: (1) Under the conditions on sets A,B in (ii), we automatically have
A

⋂
B = ∅, so S = A

∐
B. For arbitrary subsets A,B ⊂ E, the condition “A

⋂
B = ∅”

is stronger (more restrictive) than “A
⋂
B = ∅.” (2) In (ii), we are not assuming that A

and B are open in S. (Openness will end up being a consequence of what we’ve assumed,
but it’s not one of our assumptions.) (3) The equivalence of (i) and (ii) is interesting only
for proper subsets S ( E. When S = E, the equivalence follows immediately from the
definition of “connected metric space”.
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B3. Let (E, d) be a metric space, S ⊂ E a nonempty subset, and p ∈ E. The distance
from p to S, which we will write as dist(p, S), is defined to be inf{d(p, q) | q ∈ S}.

(a) Prove that dist(p, S) = 0 if and only if p ∈ S. You may use any facts stated in
the Interiors, Closures, and Boundaries handout.

(b) Using part (a) and the result of B2, prove that the following are equivalent:

(i) S is not connected.

(ii) S = A
⋃
B for some nonempty sets A,B ⊂ S for which every point of each set is

a positive distance from the other set (i.e. dist(p,B) > 0 ∀p ∈ A and dist(p,A) >
0 ∀p ∈ B).

Motivation for the above problem: Recall that, heuristically, we wanted “S is not
connected” to mean that S cannot be partitioned into two nonempty disjoint subsets
that “don’t touch each other”. There is no official definition of one subset of a metric
space touching, or not touching, another. However, were we (not unreasonably) to de-
fine “A does not touch B” to mean “every point of A is a positive distance from B”,
then the characterization of non-connectedness in this problem would turn the heuristic
characterization of “not connected” into a precise one that agrees with the mathematical
definition.

B4. Let (E, d) be a metric space, S ⊂ E a connected subset. Prove that the closure of S
is connected.
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