MAA 4211, Fall 2015—Assignment 6’s non-book problems

B1. Let R™ denote the set of sequences in R (an element @ € R* is an infinite sequence
(a;)$2, in R). The set R™ is a vector space, with addition of vectors and multiplication

by scalars defined “componentwise”, just as we do for R": if @, beR® and ¢ € R, we
define

T+b=(a;+ b))y, cd@=(ca;)Z,.

The zero element 0 of R* is the sequence each of whose terms is 0.

Let Ry° C R™ denote the subset consisting of all bounded sequences. It is not hard
to show that R;° is a vector subspace of R>; you already did part of the relevant work
in doing Rosenlicht problem p. 61/#1b. The ¢ norm on R;° is defined by ||@||oc =
sup{|a;| : i € N}. In the process of doing Rosenlicht p. 61/#1b, you also did some of
the work needed to show that || ||o is @ norm on R;°.

(a) Do all the remaining work needed to show that Rg° is a vector space (a vector
subpace of R*™), that || || is a norm on Rg®.

The normed vector space (Rp°, || ||) is denoted ¢>°(R). As with any normed vector
space, when we speak of metric-space properties of ¢>°(R), the metric is assumed to be
the one associated with the given norm (unless otherwise specified); thus the £ metric on
Rp* is the function d : Ry° x Ry® — R given by d(d, b) = doo (@, b) = sup{|a; —b;| : i € N}
(exactly the metric in Rosenlicht p. 61/#1b).

Since a sequence in ¢*(R) is a sequence of sequences, to avoid confusion in this
problem we will use a superscript rather than a subscript to label the terms of a sequence
in £>°(R); we will write such a sequence as (@™)> ;. Thus the n'® term in such a sequence
is a real-valued sequence @™ = (a{™)2, = (a{” aé”), al”, ...
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(c) Let (@™)>, be as in part (a). Since R is complete, for all i € N there exists

¢; € R such that lim,,_, az(» n ¢;. Let ¢ be the sequence (¢;)2; € R*®—no subscript
“b”, yet. Show that the sequence ¢ is, in fact, bounded. (So (¢;)32, € Ry* after all.)

(d) Let (@), and ¢ be as in part (b). Show that ()22, converges in /*(R.) to
C. (Note unlike for sequences in R™, this CANNOT be deduced just from the fact that
(a 5 )22, converges to ¢; for all i; see part (e) below.) Thus ¢*°(R) is complete.

Hint: For € > 0, if N € N is as in the Cauchy criterion for the sequence (@),
in £*(R), show that for all i € N, this same N “works” in the Cauchy criterion for the
real-valued sequence (a 5 )) . (You probably already did this in part (b).) Then apply

a lemma proved in class on 11/13/15 to each sequence (a;") ;.

Just FYI: A complete normed vector space is called a Banach space.



Notation for the remaining parts of this problem. For n € N, let é™ ¢ Ry
be the sequence whose n'® term is 1 and all of whose other terms are zero (e.g. € =
(0,0,1,0,0,0,0,...)).

(e) Show that for all i € N, (ez(-n))oo converges in R to 0.

n=1

(f) Let 0 be the zero element of Ry® (the sequence (0,0,0,0...)). Compute d(&™, 0)

for all n, and use your answer to show that (¢)>°, does not converge in £>*(R) to 0,
even though the i*"-component sequence (e(-n));?f:l converges to the i** component of 0 for

all 7.

(g) Compute d(e™,é™) for all m,n € N,m # n. Use your answer to show that
no subsequence of (€)%, can be Cauchy. Use this to deduce that no subsequence of
(e()22; can converge.

Note: since any sequence is trivially a subsequence of itself, the last conclusion implies
that ()2, does not converge in £>°(R) to anything, so, in particular, it does not
converge to 0. But I still want you to do part (f) by the method indicated in part (f).)
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(h) Use part (g) to deduce that the closed unit ball B,(0) C £>°(R) is not sequentially
compact.

Remark. Thus, by parts (d) and (h),B,(0) C ¢>(R) is a closed, bounded
subset of a complete normed vector space, yet is not sequentially compact,
hence is not compact (or totally bounded). The Heine-Borel Theorem (one
version of which asserts that closed, bounded subsets of R™, with respect to
the metric given by any norm, are compact), which we have proven for any
norm on R™ equivalent to the /> norm, does not extend to infinite-dimensional
vector spaces.

Problems B2 and B3 are intended to help you better relate the definition
of “connected subset of a metric space” to the intuitive notion of what it
sounds like this terminology ought to mean.

B2. Let (E,d) be a metric space, S C E. Prove that the following are equivalent:

(i) S is not connected.

(ii) There exist nonempty subsets A, B C S for which S = AUB and for which
AN B=0= AN B. (Here A and B denote the closures of A and B in E, not in
the subspace S.)

Some things to note: (1) Under the conditions on sets A, B in (ii), we automatically have
AN B=10,s0S = A]]B. For arbitrary subsets A, B C E, the condition “A N B = ()”
is stronger (more restrictive) than “A (| B = .” (2) In (ii), we are not assuming that A
and B are open in S. (Openness will end up being a consequence of what we’ve assumed,
but it’s not one of our assumptions.) (3) The equivalence of (i) and (ii) is interesting only
for proper subsets S C E. When S = E, the equivalence follows immediately from the
definition of “connected metric space”.



B3. Let (E,d) be a metric space, S C E a nonempty subset, and p € E. The distance
from p to S, which we will write as dist(p, S), is defined to be inf{d(p,q) | ¢ € S}.

(a) Prove that dist(p, S) = 0 if and only if p € S. You may use any facts stated in
the Interiors, Closures, and Boundaries handout.

(b) Using part (a) and the result of B2, prove that the following are equivalent:

(i) S is not connected.

(ii) § = A|J B for some nonempty sets A, B C S for which every point of each set is
a positive distance from the other set (i.e. dist(p, B) > 0 Vp € A and dist(p, A) >
0Vpe B).

Motivation for the above problem: Recall that, heuristically, we wanted “S is not
connected” to mean that S cannot be partitioned into two nonempty disjoint subsets
that “don’t touch each other”. There is no official definition of one subset of a metric
space touching, or not touching, another. However, were we (not unreasonably) to de-
fine “A does not touch B” to mean “every point of A is a positive distance from B”,
then the characterization of non-connectedness in this problem would turn the heuristic
characterization of “not connected” into a precise one that agrees with the mathematical
definition.

B4. Let (E,d) be a metric space, S C E a connected subset. Prove that the closure of S
is connected.



