MAA 4211, Fall 2015—Assignment 7's non-book problems

B1. Let X, Y be nonempty sets, let d_X, d'_X be equivalent metrics on X, and let d_Y, d'_Y be equivalent metrics on Y. Prove that if a function $f : X \to Y$ is continuous as a map $(X, d_X) \to (Y, d_Y)$, then f is continuous as a map $(X, d'_X) \to (Y, d'_Y)$. (In particular this holds if we vary only one of the metrics, i.e. if $d_X = d'_X$ or $d_Y = d'_Y$.

B2. In Rosenlicht p. $91/\text{\#3}$, suppose you remove the hypothesis that the sets S_1, S_2 are both closed. Is the conclusion still true? (Prove your answer, of course.)

B3. Use the result of Rosenlicht p. $91/\text{\#2}$ to turn the previously difficult problem p. $61/\text{\#}6$ into a nearly trivial problem. (I.e. solve the same problem very easily, using the tools we now have.)

B4. (This problem gives a second proof of a lemma we proved in class.) Let (E, d) be a metric space, let ${p_n}_{n=1}^{\infty}$ be a convergent sequence in E, let $p = \lim_{n \to \infty} p_n$, let $N \in \mathbb{N}$, and let $\epsilon > 0$. Assume that for all $n, m \ge N$, $d(p_n, p_m) < \epsilon$. Use the appropriate half of the "sequential characterization of continuity" to prove that $d(p_N, p) \leq \epsilon$. Hint: Consider the function $f : E \to \mathbf{R}$ defined by $f(q) = d(p_N, q)$.

In problems B5 below, to do any problem-part you are allowed to assume the result(s) of earlier parts of the same problem. Each part is essentially a hint for the next part, with the exception that the first three parts of $B5$ will not help you with $B5(d)$.

B5. In this problem you will prove the following important theorem:

Theorem 1: For any $n > 0$, all norms on \mathbb{R}^n are equivalent (i.e. any two norms are equivalent to each other).

For $n = 0$, the assertion in the theorem is true trivially $(\mathbf{R}^0 = \{0\})$, and the only norm is the zero-function), so we will focus on $n \geq 1$. For the rest of this problem, let $n \geq 1$ be fixed, let $\{e_i\}_{i=1}^n$ denote the standard basis of \mathbb{R}^n , let $\|\ \|_{\infty}$ denote the ℓ^{∞} norm on \mathbf{R}^n , and let d_{∞} denote the associated metric on \mathbf{R}^n . For parts (a)–(h), let $\|\cdot\|$ denote a fixed (but arbitrary) norm on \mathbb{R}^n , and let d denote the metric on \mathbb{R}^n associated with the norm $\| \cdot \|$. Each part of the problem can be done in a few lines—in some cases, just one or two lines—so don't be worried by the number of parts; the parts are numerous to *help* you prove Theorem 1. (You'd find the problem much more difficult if parts $(a)-(h)$ were omitted and the problem said only "Prove Theorem 1.")

(a) Show that there exists $M > 0$ such that

$$
||v|| \le M ||v||_{\infty} \quad \text{for all } v \in \mathbf{R}^n \ . \tag{1}
$$

Hint: observe that " $v = (v_1, v_2, \dots, v_n)$ " can be rewritten as " $v = \sum_i v_i e_i$ ", and use the (iterated) triangle inequality.

(b) Define $f: \mathbf{R}^n \to \mathbf{R}$ by $f(v) = ||v||$. Show that for all $v, w \in \mathbf{R}^n$,

$$
|f(v) - f(w)| \le M \|v - w\|_{\infty},
$$
\n(2)

where M is the same as in inequality (1).

(c) Show that $f : (\mathbf{R}^n, d_\infty) \to \mathbf{R}$ is continuous.

Note: $||v|| = d(v, 0)$, and we proved in class that for any metric space (E', d') and $q \in E$, the function $p \mapsto d'(p, q)$ is continuous with respect to the metric d. But here, you are showing that the function $v \mapsto d(v, 0)$ is continuous with respect to the metric d_{∞} , a different metric. Thus the continuity of f is not an immediate corollary of anything we proved in class.

(d) Let $S = \{v \in \mathbb{R}^n \mid ||v||_{\infty} = 1\}$ (the unit sphere centered at the origin in $(\mathbb{R}^n, d_{\infty})$). Show that S is closed and bounded in $(\mathbb{R}^n, d_{\infty})$. Conclude from the Heine-Borel Theorem that S is a compact subset of $(\mathbf{R}^n, d_{\infty})$.¹

(e) Let $g = f|_S$ (the restriction of f to S). Show that g achieves a minimum value m, and show that $m > 0$.

(f) Show that for all nonzero $v \in \mathbb{R}^n$,

$$
\left\| \frac{v}{\|v\|_{\infty}} \right\| \ge m,\tag{3}
$$

where m is as in part (e).

(g) Show that for all $v \in \mathbb{R}^n$ (including the zero vector),

$$
||v|| \ge m||v||_{\infty} \tag{4}
$$

- (h) Show that the norm $\| \cdot \|$ is equivalent to the norm $\| \cdot \|_{\infty}$.
- (i) Prove Theorem 1.

¹In class we proved the Heine-Borel Theorem for $(\mathbf{R}^n, d_{\infty})$, and deduced that it holds for (\mathbf{R}^n, d') , where d' is any metric equivalent to d_{∞} . But so far the only metrics we've shown to be equivalent to d_{∞} are the metrics associated with the ℓ^1, ℓ^2 , and ℓ^{∞} norms. Thus these are the only three metrics on \mathbb{R}^n for which we know, so far, that closed-and-bounded implies compact. Once Theorem 1 is proven, we will know that closed-and-bounded implies compact for any metric on \mathbb{R}^n that comes from a norm.