
MAA 4211, Fall 2016—Assignment 6’s non-book problems

Problems B1 and B2(c) are intended to help you better relate the formal meaning of
“connected subset of a metric space” to the intuitive notion of what it sounds like this
terminology ought to mean.

B1. Let (E, d) be a metric space, S ⊂ E. Prove that the following are equivalent:

(i) S is not connected.

(ii) There exist nonempty subsets A,B ⊂ S such that S = A
⋃
B and A

⋂
B = ∅ =

A
⋂

B. (Here A and B denote the closures of A and B in E, not in the subspace
(S, d).)

Some things to note: (1) Under the conditions on sets A,B in (ii), we automatically have
A

⋂
B = ∅, so S = A

∐
B. For arbitrary subsets A,B ⊂ E, the condition “A

⋂
B = ∅”

is stronger (more restrictive) than “A
⋂

B = ∅.” (2) In (ii), we are not assuming that A
and B are open in (S, d). (Openness in (S, d) will end up being a consequence of what
we’ve assumed, but it’s not one of our assumptions.) (3) The equivalence of (i) and
(ii) is interesting only for proper subsets S ( E. When S = E, the equivalence follows
immediately from the definition of “connected metric space”.

B2. Let (E, d) be a metric space, S ⊂ E a nonempty subset, and p ∈ E. The distance
from p to S, which we will write as dist(p, S), is defined to be inf{d(p, q) | q ∈ S}.

(a) Prove that dist(p, S) = 0 if and only if p ∈ S. You may use any facts stated in
the Interiors, Closures, and Boundaries handout.

(b) For (E, d) = E2, give an example of each of the following.

(i) A subset S and a point p /∈ S for which the infimum defining dist(p, S) is
not achieved.

(ii) A subset S and a point p /∈ S for which the infimum defining dist(p, S) is
achieved. (Note that “The infimum defining dist(p, S) is achieved” is equivalent to “There
is a point q ∈ S that, among all points in S, minimizes distance to p.”)

(c) For purposes of this problem, call S non-connected if S is not connected.1 Using
part (a) and the result of B1, prove that S is non-connected if and only if S = A

⋃
B

1Although it is tempting to use the term “disconnected” for “not connected”, topologists generally
don’t do this, instead reserving “disconnected” as one piece of the terminology for topological (sub)spaces
that fail in some spectacular way to be connected, such as totally disconnected spaces (see problem B4(g)).
The most common terminology for “not connected” is “not connected”, not “non-connected”. Here I am
using the term “non-connected” because a sentence of the form “S is not connected if and only if . . . ” is
ambiguous—does it mean that “not connected” is equivalent to the specified conditions, or does it mean
“The statement ‘S is connected if and only if . . . ’ ” is false? Make sure you avoid this sort of ambiguous
phrasing in your answers.
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for some nonempty sets A,B ⊂ S for which every point of each set is a positive distance
from the other set (i.e. dist(p,B) > 0 ∀p ∈ A and dist(p,A) > 0 ∀p ∈ B).

Motivation for part (c): Recall that, heuristically, we wanted “S is not connected” to
mean that S cannot be partitioned into two nonempty disjoint subsets that “don’t touch
each other”. There is no official definition of one subset of a metric space touching, or
not touching, another. However, were we (not unreasonably) to define “A does not touch
B” to mean “every point of A is a positive distance from B”, then the characterization
of non-connectedness in this problem would turn the heuristic characterization of “not
connected” into a precise one that agrees with the mathematical definition.

B3. Let (E, d) be a metric space, S ⊂ E a connected subset. Prove that the closure of S
is connected.

B4. Let (E, d) be a metric space.

(a) Let p ∈ E. Show that the singleton set {p} is connected.

(b) Let p ∈ E, and let Fp = {S ⊂ E | S is connected and p ∈ S} ⊂ P (E). Let

Cp =
⋃

S∈Fp

S.

Prove that Cp is connected.
(Do not re-invent the wheel to prove this. You should need no more than a couple

of sentences, if you apply a relevant proposition in Section III.6 of Rosenlicht.)

The set Cp defined above is called the connected component of p in E (or in (E, d)).
We will use the notation “Cp” with this meaning for the rest of this problem. A subset
C ⊂ E is called a connected component of E if C = Cp for some p ∈ E.

(c) For p ∈ E, prove that Cp is the largest connected set containing p, in the following
sense: if S ⊂ E is connected and p ∈ S, then S ⊂ Cp.

(d) Define a relation ∼ on E by declaring p ∼ q if and only if q ∈ Cp. Prove that
∼ is an equivalence relation, and that the equivalence classes are exactly the connected
components of E.

Recall that, for any equivalence relation on a set S, the equivalence classes partition
S into pairwise disjoint subsets. (For the relation above, “pairwise disjointness” means
that for any p, q ∈ E, either Cp = Cq or Cp

⋂
Cq = ∅.) Thus a metric space is always the

disjoint union of its connected components.

(e) Prove that every connected component of (E, d) is a closed subset of E. (Here
(E, d) is a general metric space again, not a totally disconnected metric space.)

(f) Use part (e) to prove that if (E, d) has only finitely many connected components,
then each connected component is both open and closed.
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(g) (E, d) is called totally disconnected if the only nonempty connected subsets of E
are the singleton sets. Prove that Q, with its usual metric, is totally disconnected.

Note: in Assignment 3, Problem B3, you effectively were proving that Q is not
connected (but “connected” was not in our mathematical vocabulary at the time). Now
you are proving something much stronger.

B5. Let X, Y be nonempty sets, let dX , d
′
X be equivalent metrics on X, and let dY , d

′
Y

be equivalent metrics on Y . Prove that if a function f : X → Y is continuous as a map
(X, dX) → (Y, dY ), then f is continuous as a map (X, d′X) → (Y, d′Y ). (In particular this
holds if we vary only one of the metrics, i.e. if dX = d′X or dY = d′Y .)

B6. Let (X, dX), (Y, dY ) be metric spaces, f : (X, dX) → (Y, dY ) a continuous function,
and S ⊂ X nonempty. Prove that the restriction f |S is continuous as a function (S, dX)→
(Y, dY ).
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