MAA 4211, Fall 2017—Assignment 4's non-book problems

B1. Let (E, d) be a metric space, let $(p_n)_{n=1}^{\infty}$ be a sequence in E, and define sequences $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ by

$$x_n = p_{2n-1}$$
 for each $n \in \mathbf{N}$,
 $y_n = p_{2n}$ for each $n \in \mathbf{N}$.

(In other words, (x_n) and (y_n) are the subsequences of (p_n) given by the odd-numbered terms and even-numbered terms, respectively.) Prove that the following are equivalent:

- (i) $(p_n)_{n=1}^{\infty}$ converges.
- (ii) Both $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ converge, and their limits are equal.

Prove also that if condition (ii) holds, then $\lim_{n \to \infty} p_n = \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.

B2. Let (E, d) be a metric space, let $(p_n)_{n=1}^{\infty}$ be a Cauchy sequence in E, and assume that this sequence has a convergent subsequence $(p_{n_i})_{i=1}^{\infty}$. Let $p = \lim_{i \to \infty} p_{n_i}$. Show that the original sequence $(p_n)_{n=1}^{\infty}$ also converges to p.

(Note (E, d) is not assumed to have any properties other than being a metric space; e.g. we are not assuming (E, d) is complete. The hypotheses say only that *this particular* Cauchy sequence $(p_n)_{n=1}^{\infty}$ has a convergent subsequence, not that every sequence has a convergent subsequence, and not that every Cauchy sequence has a convergent subsequence.)

B3. Let d_1 and d_2 be two metrics on a (nonempty) set E. Call a set $S \subset E$ " d_1 -open" if it is open in the metric space (E, d_1) , and " d_2 -open" if it is open in the metric space (E, d_2) . Analogously define " d_i -bounded set", " d_i -Cauchy sequence", and " d_i -convergent sequence".

(a) Suppose that there exists c > 0 such that $d_2(p,q) \leq cd_1(p,q)$ for all $p,q \in E$. Prove that every d_2 -open subset of E is d_1 -open. (*Note:* This was already proven in class, but you should re-prove it anyway to make sure you understand the argument.)

(b) Recall from class that metrics d_1, d_2 on a set E are called *equivalent* if there exist $c_1, c_2 > 0$ such that for all $p, q \in E$, $d_2(p,q) \leq c_1d_1(p,q)$ and $d_1(p,q) \leq c_2d_2(p,q)$. Below, we write " $d_1 \sim d_2$ " for " d_1, d_2 are equivalent metrics" (on a given set).

Let E be an arbitrary nonempty set. Prove the following:

(i) The relation \sim is an equivalence relation on the set of all metrics on E.

(ii) Equivalent metrics on E determine the same open sets and the same closed sets. I.e. if d_1 and d_2 are equivalent and $U \subset E$, then U is d_1 -open iff U is d_2 -open, and U is d_1 -closed iff U is d_2 -closed.

(iii) Equivalent metrics determine the same bounded sets. I.e. if d_1 and d_2 are equivalent and $U \subset E$, then U is d_1 -bounded if U is d_2 -bounded.

(iv) Equivalent metrics determine the same Cauchy sequences, the same convergent sequences, and the same limits of convergent sequences. I.e. if d_1 and d_2 are equivalent, $q \in E$, and $(p_n)_{n=1}^{\infty}$ is a sequence in E, then (p_n) is d_1 -Cauchy iff (p_n) is d_2 -Cauchy in (E, d_2) , and (p_n) is d_1 -convergent to q iff (p_n) is d_2 -convergent to q.

B4. Let || || and || ||' be two norms on a vector space V. We call these two norms *equivalent* if there exist $c_1, c_2 > 0$ such that for all $v \in V$, $||v|| \leq c_1 ||v||'$ and $||v||' \leq c_2 ||v||$.¹ Prove that if norms || || and || ||' are equivalent, then their associated metrics are equivalent.

B5. Let $n \in \mathbf{N}$. Prove that the ℓ^1, ℓ^2 , and ℓ^{∞} norms on \mathbf{R}^n are all equivalent to each other (i.e. each is equivalent to the other two), and hence that their associated metrics are equivalent to each other.

B6. Let (E_1, d_1) and (E_2, d_2) be metric spaces. In earlier homework (Rosenlicht, p. 61/1c) you showed that the function $d: (E_1 \times E_2) \times (E_1 \times E_2) \to \mathbf{R}$ defined by

 $d((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\}\$

is a metric on $E_1 \times E_2$. (a) Show that the function $d' : (E_1 \times E_2) \times (E_1 \times E_2) \to \mathbf{R}$ defined by

$$d'((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2),$$

is also a metric on $E_1 \times E_2$.

(b) Show that the metrics d and d' on $E_1 \times E_2$ are equivalent. (Note: "Show" always means "Prove".)

(c) Show that if (E_1, d_1) and (E_2, d_2) are complete, then so are $(E_1 \times E_2, d)$ and $(E_1 \times E_2, d')$.

B7. In previous homework you showed that \mathbf{R}_b^{∞} , the space of bounded real-valued sequences, is a vector subspace of \mathbf{R}^{∞} , the space of all real-valued sequences. Now define

$$\mathbf{R}_0^{\infty} = \{ \vec{a} = (a_m)_{m=1}^{\infty} \in \mathbf{R}^{\infty} : a_m = 0 \text{ for all but finitely many } m \}$$

¹Some mathematicians use the term "strongly equivalent" for *metrics* related to each other as in problem 5. What these mathematicians call "equivalent metrics" is what I call "topologically equivalent metrics". However, for *norms* related to each other as in problem 6, there is universal agreement on the terminology "equivalent".

(a) Show that \mathbf{R}_0^{∞} is a vector subspace of \mathbf{R}_b^{∞} .

(b) In view of part (a), we can restrict the ℓ^{∞} norm on \mathbf{R}_{b}^{∞} , as well as its associated metric d_{∞} , to \mathbf{R}_{0}^{∞} . (Note that for $\vec{a} \in \mathbf{R}_{0}^{\infty}$, we can actually write $\|\vec{a}\|_{\infty} = \max\{|a_{m}| : m \in \mathbf{N}\}$ instead of $\|\vec{a}\|_{\infty} = \sup\{|a_{m}| : m \in \mathbf{N}\}$; "max" is well-defined here, since for each $\vec{a} \in \mathbf{R}_{0}^{\infty}$, the set $\{|a_{m}| : m \in \mathbf{N}\}$ is finite.) Show that $(\mathbf{R}_{0}^{\infty}, d_{\infty})$ is not complete. I.e. produce a sequence $(\vec{a}^{(i)})_{i=1}^{\infty}$ in \mathbf{R}_{0}^{∞} that is Cauchy but does not converge in $(\mathbf{R}_{0}^{\infty}, d_{\infty})$. (Hint: consider sequences $(\vec{a}^{(i)})_{i=1}^{\infty}$ in which $a_{j}^{(i)} = 0$ for j > i but $a_{i}^{(i)} \neq 0$, and for which the only difference between $\vec{a}^{(i)}$ and $\vec{a}^{(i-1)}$ is the i^{th} term.)