MAA 4211, Fall 2017—Assignment 5's non-book problems

B1. (Strengthening of Rosenlicht problem III.10.) Let $(p_n)_{n=1}^{\infty}$ be a convergent sequence in a metric space (E, d) , let R be the range of this sequence, and let $p = \lim_{n\to\infty} p_n$. Show that $R \cup \{p\}$ is a compact subset of E.

B2. Let (E, d) be a metric space and let $S \subset E$.

- (a) Prove that $\overline{S} = S \cup \{ \text{all cluster points of } S \}.$
- (b) Prove that $S = S \bigcup \{ \text{all cluster points of } S \text{ that lie in } \partial S \}.$

B3. Let d_1, d_2 be equivalent metrics on a set E. Without using any relations between compactness and sequential compactness, prove that (E, d_1) is sequentially compact if and only if (E, d_2) is sequentially compact.

B4. As in previous homework, let \mathbb{R}^{∞} denote the vector space whose elements are realvalued sequences, and let $\mathbf{R}_{b}^{\infty} \subset \mathbf{R}^{\infty}$ denote the space of bounded real-valued sequences. We will write many elements of \mathbb{R}^{∞} using the notation \vec{a} to stand for $(a_i)_{i=1}^{\infty}$, the notation \vec{b} to stand for $(b_i)_{i=1}^{\infty}$, etc. (Thus if we are given an element $\vec{a} \in \mathbb{R}^{\infty}$, it is understood that the notation " a_i " means the ith term of \vec{a} .) We often think of elements of \mathbb{R}^∞ as "infinitely long row-vectors" (i.e. vectors with infinitely many components), and think of the *i*th term of an element of \mathbb{R}^{∞} as the *i*th component of this vector.

The normed vector space $(\mathbb{R}_{b}^{\infty}, \| \|_{\infty})$ is conventionally called $\ell^{\infty}(\mathbb{R})$. As with any normed vector space, when we speak of metric-space properties of $\ell^{\infty}(\mathbf{R})$, the metric is assumed to be the one associated with the given norm (unless otherwise specified); thus the ℓ^{∞} metric on \mathbf{R}_{b}^{∞} is the function $d : \mathbf{R}_{b}^{\infty} \times \mathbf{R}_{b}^{\infty} \to \mathbf{R}$ given by $d(\vec{a}, \vec{b}) = d_{\infty}(\vec{a}, \vec{b}) =$ $\sup\{|a_i - b_i| : i \in \mathbb{N}\}\$ (exactly the metric in Rosenlicht p. 61/#1b).

Since a sequence in $\ell^{\infty}(\mathbf{R})$ is a sequence of sequences, to avoid confusion in this problem we will use a superscript rather than a subscript to label the terms of a sequence in $\ell^{\infty}(\mathbf{R})$; we will write such a sequence as $(\vec{a}^{(n)})_{n=1}^{\infty}$. Thus the n^{th} term in such a sequence is a real-valued sequence $\vec{a}^{(n)} = (a_i^{(n)})$ $\binom{n}{i}\}_{i=1}^{\infty} = (a_1^{(n)}$ $a_1^{(n)}, a_2^{(n)}$ $\binom{n}{2}, a_3^{(n)}$ $\binom{n}{3}, \ldots$). You may find it helpful to picture such a sequence as an array with infinitely many rows and columns, in which the first row is the sequence $\vec{a}^{(1)}$, the second row is the sequence $\vec{a}^{(2)}$, etc.:

$$
\begin{matrix}\na_1^{(1)} & a_2^{(1)} & a_3^{(1)} & a_4^{(1)} & \dots \\
a_1^{(2)} & a_2^{(2)} & a_3^{(2)} & a_4^{(2)} & \dots \\
a_1^{(3)} & a_2^{(3)} & a_3^{(3)} & a_4^{(3)} & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots\n\end{matrix}
$$

(a) Let $(\vec{a}^{(n)})_{n=1}^{\infty}$ be a Cauchy sequence in $\ell^{\infty}(\mathbf{R})$. Show that for all $i \in \mathbf{N}$, the real-valued sequence $(a_i^{(n)}$ $\binom{n}{i}$ _{n=1} (the sequence of "ith components"—more precisely, ith terms—of the $\vec{a}^{(n)}$, corresponding to the ith column in the diagram above) is a Cauchy sequence in **R**. Note that in $(a_i^{(n)})$ $\binom{n}{i}_{n=1}^{\infty}$, the index *i* is fixed; it is *n* that varies: $(a_i^{(n)})$ $\binom{n}{i}\}_{n=1}^{\infty}$ = $(a_i^{(1)}$ $\binom{1}{i}, a_i^{(2)}$ $\binom{2}{i}, a_i^{(3)}$ $\binom{5}{i}, \ldots$).

(b) Let $(\vec{a}^{(n)})_{n=1}^{\infty}$ be as in part (a). Since **R** is complete, for all $i \in \mathbb{N}$ there exists $c_i \in \mathbf{R}$ such that $\lim_{n\to\infty} a_i^{(n)} = c_i$. Let \vec{c} be the sequence $(c_i)_{i=1}^{\infty} \in \mathbf{R}^{\infty}$ —no subscript "b", yet. Show that the sequence \vec{c} is, in fact, bounded. (So $\vec{c} \in \mathbb{R}^{\infty}_b$ after all.)

(c) Let $(\vec{a}^{(n)})_{n=1}^{\infty}$ and \vec{c} be as in part (b). Show that $(\vec{a}^{(n)})_{n=1}^{\infty}$ converges in $\ell^{\infty}(\mathbf{R})$ to \vec{c} . (Note: unlike for sequences in \mathbb{R}^m , this CANNOT be deduced just from the fact that $(a_i^{(n)}$ $\binom{n}{i}_{n=1}^{\infty}$ converges to c_i for all i; see part (e) below.) Thus $\ell^{\infty}(\mathbf{R})$ is complete.

Hint: For $\epsilon > 0$, if $N \in \mathbb{N}$ is as in the Cauchy criterion for the sequence $(\vec{a}^{(n)})_{n=1}^{\infty}$ in $\ell^{\infty}(\mathbf{R})$, show that for all $i \in \mathbf{N}$, this same N "works" in the Cauchy criterion for the real-valued sequence $(a_i^{(n)}$ $\binom{n}{i}$ _{n=1}. (You probably already did this in part (b).) Then apply a lemma proved in class on $11/8/17$ to each sequence $(a_i^{(n)})$ $\binom{n}{i}\}_{n=1}^{\infty}$.

Notation for the remaining parts of this problem. For $n \in \mathbb{N}$, let $\vec{e}^{(n)} \in \mathbb{R}^\infty_b$ be the sequence whose n^{th} term is 1 and all of whose other terms are zero (e.g. $\bar{e}^{(3)}$ = $(0, 0, 1, 0, 0, 0, 0, \ldots)).$

(d) Show that for all $i \in \mathbf{N}$, $(e_i^{(n)}$ $\binom{n}{i}_{n=1}^{\infty}$ converges in **R** to 0.

(e) Let $\vec{0}$ be the zero element of \mathbf{R}_{b}^{∞} (the sequence $(0,0,0,0...)$). Compute $d(\vec{e}^{(n)}, \vec{0})$ for all n, and use your answer to show that $(\bar{e}^{(n)})_{n=1}^{\infty}$ does not converge in $\ell^{\infty}(\mathbf{R})$ to $\vec{0}$, even though the *i*th-component sequence $(e_i^{(n)})$ $\binom{n}{i}_{n=1}^{\infty}$ converges to the i^{th} component of $\vec{0}$ for every i.

(f) Compute $d(\bar{e}^{(n)}, \bar{e}^{(m)})$ for all $m, n \in \mathbb{N}, m \neq n$. Use your answer to show that no subsequence of $(\bar{e}^{(n)})_{n=1}^{\infty}$ can be Cauchy. Use this to deduce that no subsequence of $(\vec{e}^{(n)})_{n=1}^{\infty}$ can converge.

Note: since any sequence is trivially a subsequence of itself, the last conclusion implies that $(\bar{e}^{(n)})_{n=1}^{\infty}$ does not converge in $\ell^{\infty}(\mathbf{R})$ to *anything*, so, in particular, it does not converge to $\vec{0}$. But I still want you to do part (e) by the method indicated in part (e).)

(g) Use part (f) to deduce that the closed unit ball $\overline{B}_1(\vec{0}) \subset \ell^{\infty}(\mathbf{R})$ is not sequentially compact. (Thus this ball is a closed, bounded subset of a complete metric space that generalizes $(\mathbb{R}^n, d_{\infty})$, but is not compact. Analogs of the Heine-Borel theorem are false in infinite dimensions.)