
MAA 4211, Fall 2018—Assignment 3’s non-book problems

B1. Let ‖ ‖ be a norm on a vector space V . Show that the function d : V × V → R
defined by d(v, w) = ‖v − w‖ is a metric on V . (Thus, in the context of a normed vector
space, we are justified in referring to d as the “associated metric”.)

B2. (a) Let Z be any nonempty set, and let Fun(Z,R) denote the set of all functions
Z → R. Temporary notation, just for this problem: let 0 denote the constant function
with value 0 (i.e. 0(z) = 0 for all z ∈ Z). For f, g ∈ Fun(Z,R) and c ∈ R we define
f + g ∈ Fun(Z,R) and cf ∈ Fun(Z,R) by

f + g = the function z 7→ f(z) + g(z),

cf = the function z 7→ cf(z).

Check that, with the operations above, Fun(Z,R) is a vector space with zero-element
0.

(b) Let R∞ denote the set of all functions N→ R. For f ∈ R∞, one of the notations we
commonly use is (x1, x2, x3, . . .), where xn = f(n), n ∈ N. Thus an element of R∞ is also
called an infinite sequence in R. By part (a), R∞ is a vector space. Check that, in the
sequence-notation above, the operations and zero-element in R∞ (as defined in part (a))
are given by

(x1, x2, x3, . . .) + (y1, y2, y3, . . .) = (x1 + y1, x2 + y2, x3 + y3, . . .),

c(x1, x2, x3, . . .) = (cx1, cx2, cx3, . . .),

0 = ~0 := (0, 0, 0, . . .).

(c) A real-valued sequence ~x = (x1, x2, x3, . . .) ∈ R∞ (switching from the notation “f”
in part (b)) is called bounded if the set {|xn| : n ∈ N} is bounded; equivalently, if there
exists M ∈ R such that for all n ∈ N we have |xn| ≤ M . Let R∞b ⊂ R∞ denote the set
of bounded real-valued sequences. Show that R∞b is a vector subspace of R∞.

(d) For any ~x ∈ R∞b , the set {|xn| : n ∈ N} is nonempty and bounded above, hence has
a least upper bound. Therefore we can define a function ‖ ‖∞ : R∞b → R by

‖~x‖∞ := sup{|xn| : n ∈ N}.

Show that ‖ ‖∞ is a norm on the vector space R∞b . (Note: the “∞” subscript in ‖ ‖∞
has nothing to do with the “∞” superscript in R∞. Rather, the notation for this norm
comes from the analogous norm on Rn, where we can replace “sup” by “max”.) We call
this norm the `∞-norm or sup-norm on R∞b .

(e) Let d∞ denote the metric on R∞b associated with the `∞ norm; we call d∞ the `∞

metric on R∞b . Check that d∞ is given by

d∞(~x, ~y) = sup{|xn − yn| : n ∈ N}.
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B3. [This one was done briefly, and mostly verbally, in class. Redo it in more detail.] Let
(V, ‖ ‖) be a normed vector space, viewed as a metric space with the associated metric.
Show that for all v ∈ V ,

for each r > 0 we have Br(v) = {v + w | w ∈ Br(0)},
and for each r ≥ 0 we have Br(v) = {v + w | w ∈ Br(0)}.

In other words, each open (respectively, closed) ball centered at a given v is simply the
translation, by v, of the open (respectively, closed) ball of the same radius centered at the
origin.

B4. Define a metric d on the set of rational numbers Q by d(x, y) = |x−y| (the restriction
to Q of the standard metric on R). Give an example, with proof, of a nonempty, proper
subset of (Q, d) that is both open and closed in this metric space. (Do not expect your
subset to be either open or closed in R, let alone both open and closed in R. There is no
nonempty, proper subset of R that is both open and closed with respect to the standard
metric.)

B5. Let (E, d) be a metric space and let X ⊂ E be a nonempty subset. For r > 0 and
p ∈ X, let BE

r (p) and BX
r (p) denote the open balls of radius r and center p in the metric

spaces (E, d) and (X, d|X) respectively. (As stated in class, ‘d|X ’ is “abuse of notation”
that we’re allowing for ‘d|X×X ’.) Similarly, let let B̄E

r (p) and B̄X
r (p) denote the open balls

of radius r and center p in the metric spaces indicated by the superscripts. Show that,
for all such r and p,

BX
r (p) = BE

r (p)
⋂
X

and B̄X
r (p) = B̄E

r (p)
⋂
X.

B6. Let n ≥ 1 and let En denote Euclidean n-space. Let p ∈ En, r ≥ 0. Let Br(p) denote
the closed ball of radius r centered at p. Prove that Br(p) is not an open set.

Remember: (i) “Closed” does not imply “not open”. The fact that a closed ball in
a metric space is a closed set does not imply that a closed ball can’t be an open set. (In
fact, in one of the Rosenlicht problems you will see an example in which every ball is
simultaneously an open set and a closed set.) (ii) There is no such thing as “proof by
picture”. If you are asserting, for example, that a certain open ball contains points of
some other set, you have to prove that assertion, not merely assert that it’s true based on
some picture you’ve drawn and your intuition.

B7. Let (E, d) be a metric space. For purposes of this problem, for each p ∈ E define a
property we’ll call “boundedness with respect to p” as follows: a set S ⊂ E is bounded
with respect to p if S is contained in some ball centered at p.

Let p ∈ E. Show that for every S ⊂ E, the following are equivalent:

(i) S is bounded with respect to p.
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(ii) S is bounded.

(iii) S is bounded with respect to q for all q ∈ E.

B8. Let (E, d) = E2 (Euclidean 2-space). Let p ∈ E and let r > 0.

(a) Show that Br(p) = Br(p) (i.e. the closure of an open ball is the closed ball with
the same center and radius).

(b) Show that ∂Br(p) is the sphere of radius r centered at p, defined as {q ∈ E |
d(p, q) = r}. (This is the general definition of “sphere” for an arbitrary metric space;
spheres in E2 are circles.)

(c) Re-do parts (a) and (b) with E2 replaced by En, where n is arbitrary. Once (a)
and (b) are done, you should find this easy; if not, then your arguments in (a) and (b)
are probably wrong.

B9. Give an example of a metric space E in which there is an open ball Br(p) whose
closure is not the closed ball Br(p). (You have already encountered a metric space with
this property.)

B10. (a) Let (E, d) be a metric space, p ∈ E, r > 0. Let Sr(p) denote the sphere of radius
r centered at p (see B6(b)). Prove that ∂(Br(p)) ⊂ Sr(p).

(b) Give an example of a metric space (E, d) in which there is an open ball Br(p) for
which ∂(Br(p)) 6= Sr(p).
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