MAA 4211, Fall 2018—Assignment 3's non-book problems

- B1. Let $\| \|$ be a norm on a vector space V. Show that the function $d: V \times V \to \mathbf{R}$ defined by $d(v, w) = \|v w\|$ is a metric on V. (Thus, in the context of a normed vector space, we are justified in referring to d as the "associated metric".)
- B2. (a) Let Z be any nonempty set, and let $\operatorname{Fun}(Z, \mathbf{R})$ denote the set of all functions $Z \to \mathbf{R}$. Temporary notation, just for this problem: let $\underline{\mathbf{0}}$ denote the constant function with value 0 (i.e. $\underline{\mathbf{0}}(z) = 0$ for all $z \in Z$). For $f, g \in \operatorname{Fun}(Z, \mathbf{R})$ and $c \in \mathbf{R}$ we define $f + g \in \operatorname{Fun}(Z, \mathbf{R})$ and $c \in \mathbf{R}$ we define

$$f+g = \text{the function } z \mapsto f(z) + g(z),$$

 $cf = \text{the function } z \mapsto cf(z).$

Check that, with the operations above, $\operatorname{Fun}(Z,\mathbf{R})$ is a vector space with zero-element $\underline{\mathbf{0}}$.

(b) Let \mathbf{R}^{∞} denote the set of all functions $\mathbf{N} \to \mathbf{R}$. For $f \in \mathbf{R}^{\infty}$, one of the notations we commonly use is (x_1, x_2, x_3, \ldots) , where $x_n = f(n), n \in \mathbf{N}$. Thus an element of \mathbf{R}^{∞} is also called an *infinite sequence* in \mathbf{R} . By part (a), \mathbf{R}^{∞} is a vector space. Check that, in the sequence-notation above, the operations and zero-element in \mathbf{R}^{∞} (as defined in part (a)) are given by

$$(x_1, x_2, x_3, \ldots) + (y_1, y_2, y_3, \ldots) = (x_1 + y_1, x_2 + y_2, x_3 + y_3, \ldots),$$

 $c(x_1, x_2, x_3, \ldots) = (cx_1, cx_2, cx_3, \ldots),$
 $\underline{\mathbf{0}} = \vec{\mathbf{0}} := (0, 0, 0, \ldots).$

- (c) A real-valued sequence $\vec{x} = (x_1, x_2, x_3, \ldots) \in \mathbf{R}^{\infty}$ (switching from the notation "f" in part (b)) is called *bounded* if the set $\{|x_n| : n \in \mathbf{N}\}$ is bounded; equivalently, if there exists $M \in \mathbf{R}$ such that for all $n \in \mathbf{N}$ we have $|x_n| \leq M$. Let $\mathbf{R}_b^{\infty} \subset \mathbf{R}^{\infty}$ denote the set of bounded real-valued sequences. Show that \mathbf{R}_b^{∞} is a vector subspace of \mathbf{R}^{∞} .
- (d) For any $\vec{x} \in \mathbf{R}_b^{\infty}$, the set $\{|x_n| : n \in \mathbf{N}\}$ is nonempty and bounded above, hence has a least upper bound. Therefore we can define a function $\| \cdot \|_{\infty} : \mathbf{R}_b^{\infty} \to \mathbf{R}$ by

$$\|\vec{x}\|_{\infty} := \sup\{|x_n| : n \in \mathbf{N}\}.$$

Show that $\| \|_{\infty}$ is a norm on the vector space \mathbf{R}_b^{∞} . (Note: the " ∞ " subscript in $\| \|_{\infty}$ has nothing to do with the " ∞ " superscript in \mathbf{R}^{∞} . Rather, the notation for this norm comes from the analogous norm on \mathbf{R}^n , where we can replace "sup" by "max".) We call this norm the ℓ^{∞} -norm or sup-norm on \mathbf{R}_b^{∞} .

(e) Let d_{∞} denote the metric on \mathbf{R}_b^{∞} associated with the ℓ^{∞} norm; we call d_{∞} the ℓ^{∞} metric on \mathbf{R}_b^{∞} . Check that d_{∞} is given by

$$d_{\infty}(\vec{x}, \vec{y}) = \sup\{|x_n - y_n| : n \in \mathbf{N}\}.$$

B3. [This one was done briefly, and mostly verbally, in class. Redo it in more detail.] Let (V, || ||) be a normed vector space, viewed as a metric space with the associated metric. Show that for all $v \in V$,

for each
$$r > 0$$
 we have $B_r(v) = \{v + w \mid w \in B_r(0)\},$
and for each $r \ge 0$ we have $\overline{B}_r(v) = \{v + w \mid w \in \overline{B}_r(0)\}.$

In other words, each open (respectively, closed) ball centered at a given v is simply the translation, by v, of the open (respectively, closed) ball of the same radius centered at the origin.

B4. Define a metric d on the set of rational numbers \mathbf{Q} by d(x,y) = |x-y| (the restriction to \mathbf{Q} of the standard metric on \mathbf{R}). Give an example, with proof, of a nonempty, proper subset of (\mathbf{Q}, d) that is both open and closed in this metric space. (Do not expect your subset to be either open or closed in \mathbf{R} , let alone *both* open and closed in \mathbf{R} . There is no nonempty, proper subset of \mathbf{R} that is both open and closed with respect to the standard metric.)

B5. Let (E,d) be a metric space and let $X \subset E$ be a nonempty subset. For r > 0 and $p \in X$, let $B_r^E(p)$ and $B_r^X(p)$ denote the open balls of radius r and center p in the metric spaces (E,d) and $(X,d|_X)$ respectively. (As stated in class, ' $d|_X$ ' is "abuse of notation" that we're allowing for ' $d|_{X \times X}$ '.) Similarly, let let $\bar{B}_r^E(p)$ and $\bar{B}_r^X(p)$ denote the open balls of radius r and center p in the metric spaces indicated by the superscripts. Show that, for all such r and p,

$$B_r^X(p) = B_r^E(p) \cap X$$

and $\bar{B}_r^X(p) = \bar{B}_r^E(p) \cap X$.

B6. Let $n \ge 1$ and let \mathbf{E}^n denote Euclidean n-space. Let $p \in \mathbf{E}^n$, $r \ge 0$. Let $\overline{B}_r(p)$ denote the closed ball of radius r centered at p. Prove that $\overline{B}_r(p)$ is not an open set.

Remember: (i) "Closed" does not imply "not open". The fact that a closed ball in a metric space is a closed set does not imply that a closed ball can't be an open set. (In fact, in one of the Rosenlicht problems you will see an example in which *every* ball is simultaneously an open set and a closed set.) (ii) There is no such thing as "proof by picture". If you are asserting, for example, that a certain open ball contains points of some other set, you have to *prove* that assertion, not merely assert that it's true based on some picture you've drawn and your intuition.

B7. Let (E,d) be a metric space. For purposes of this problem, for each $p \in E$ define a property we'll call "boundedness with respect to p" as follows: a set $S \subset E$ is bounded with respect to p if S is contained in some ball centered at p.

Let $p \in E$. Show that for every $S \subset E$, the following are equivalent:

(i) S is bounded with respect to p.

- (ii) S is bounded.
- (iii) S is bounded with respect to q for all $q \in E$.
- B8. Let $(E,d) = \mathbf{E}^2$ (Euclidean 2-space). Let $p \in E$ and let r > 0.
- (a) Show that $\overline{B_r(p)} = \overline{B}_r(p)$ (i.e. the closure of an open ball is the closed ball with the same center and radius).
- (b) Show that $\partial B_r(p)$ is the *sphere* of radius r centered at p, defined as $\{q \in E \mid d(p,q) = r\}$. (This is the general definition of "sphere" for an arbitrary metric space; spheres in \mathbf{E}^2 are circles.)
- (c) Re-do parts (a) and (b) with \mathbf{E}^2 replaced by \mathbf{E}^n , where n is arbitrary. Once (a) and (b) are done, you should find this easy; if not, then your arguments in (a) and (b) are probably wrong.
- B9. Give an example of a metric space E in which there is an open ball $B_r(p)$ whose closure is *not* the closed ball $\overline{B}_r(p)$. (You have already encountered a metric space with this property.)
- B10. (a) Let (E, d) be a metric space, $p \in E$, r > 0. Let $S_r(p)$ denote the sphere of radius r centered at p (see B6(b)). Prove that $\partial(B_r(p)) \subset S_r(p)$.
- (b) Give an example of a metric space (E, d) in which there is an open ball $B_r(p)$ for which $\partial(B_r(p)) \neq S_r(p)$.