
MAA 4211, Fall 2018—Assignment 4’s non-book problems

B1. Let (E, d) be a metric space, let (pn)∞n=1 be a sequence in E, and define sequences
(xn)∞n=1 and (yn)∞n=1 by

xn = p2n−1 for each n ∈ N,

yn = p2n for each n ∈ N.

(In other words, (xn) and (yn) are the subsequences of (pn) given by the odd-numbered
terms and even-numbered terms, respectively.) Prove that the following are equivalent:

(i) (pn)∞n=1 converges.

(ii) Both (xn)∞n=1 and (yn)∞n=1 converge, and their limits are equal.

Prove also that if condition (ii) holds, then lim
n→∞

pn = lim
n→∞

xn = lim
n→∞

yn.

B2. Let d1 and d2 be two metrics on a nonempty set E.1 Call a set S ⊂ E “d1-open” if it
is open in the metric space (E, d1), and “d2-open” if it is open in the metric space (E, d2).
Analogously define “di-bounded set”, “di-convergent sequence”, and, for a sequence in E
and point q ∈ E, the property “di-convergent to q”.

(a) Suppose that there exists c > 0 such that d2(p, q) ≤ cd1(p, q) for all p, q ∈ E.
Prove that every d2-open subset of E is d1-open.

Note: If there exists any c ∈ R such that d2(p, q) ≤ cd1(p, q) for all p, q ∈ E, then
there exists a positive such c:

• If E contains at least two points, say p1 and p2, then d1(p1, p2) and d2(p1, p2) are
both positive, so if d2(p1, p2) ≤ cd1(p1, p2) then c must be positive as well.

• If E contains exactly one point p, then d2(p, p) = 0 ≤ c · 0 = cd1(p, p) for every
c ∈ R, so, in particular, any positive c works.

(b) Metrics d1, d2 on a set E are called equivalent if there exist c1, c2 > 0 such that
for all p, q ∈ E, d2(p, q) ≤ c1d1(p, q) and d1(p, q) ≤ c2d2(p, q).2 Below, we write “d1 ∼ d2”
for “d1, d2 are equivalent metrics” (on a given set).

Let E be an arbitrary nonempty set. Prove the following:

1Everything you’ll be proving in this problem is true even if E is empty; I’m just not asking you to
spend time to deal with this trivial case, or to make sure you word your arguments in such a way that
they apply equally well whether or not E is empty.

2See the note in part (a). If there exist any c1, c2 ∈ R for which the preceding condition holds, then
there exist positive c1 and c2 for which the condition holds. Thus, the requirement in this definition
that c1, c2 be positive is redundant. It has been put into the definition explicitly just so that in proving
assertions about equivalent metrics, you don’t have to spend time showing that you can take c1 and c2
to be positive.
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(i) The relation ∼ is an equivalence relation on the set of all metrics on E.

(ii) Equivalent metrics on E determine the same open sets and the same
closed sets. I.e. if d1 and d2 are equivalent and U ⊂ E, then U is d1-open iff
U is d2-open, and U is d1-closed iff U is d2-closed.

(iii) Equivalent metrics determine the same bounded sets. I.e. if d1 and d2
are equivalent and U ⊂ E, then U is d1-bounded if U is d2-bounded.

(iv) Equivalent metrics determine the same convergent sequences and the
same limits of convergent sequences. I.e. if d1 and d2 are equivalent, q ∈ E,
and (pn)∞n=1 is a sequence in E, then (pn) is d1-convergent to q iff (pn) is
d2-convergent to q (hence (pn) is d1-convergent iff (pn) is d2-convergent).

B3. Let ‖ ‖ and ‖ ‖′ be two norms on a vector space V . We call these two norms equivalent
if there exist c1, c2 > 0 such that for all v ∈ V , ‖v‖ ≤ c1‖v‖′ and ‖v‖′ ≤ c2‖v‖. 3

(a) Prove that if norms ‖ ‖ and ‖ ‖′ are equivalent, then their associated metrics are
equivalent.

(b) Check that “equivalence of norms” is an equivalence relation on the set of all
norms on V . To do this, simply look back at your proof of B2(b)(i), and check in your
head that the same argument works if you replace all your expressions of the form “d(p, q)”
with expressions of the form “‖v‖”.

B4. Prove that, for each n ∈ N, the `1, `2, and `∞ norms on Rn are all equivalent to each
other (i.e. each is equivalent to the other two), and hence that their associated metrics
are equivalent to each other. Note that problem B3(b) can be used to reduce from three
to two the number of norm-pair comparisons you need to do.

B5. Let (E, d) be a metric space, let (pn)∞n=1 be a Cauchy sequence in E, and assume that
this sequence has a convergent subsequence (pni

)∞i=1. Let p = limi→∞ pni
. Show that the

original sequence (pn)∞n=1 also converges to p.

(Note (E, d) is not assumed to have any properties other than being a metric space;
e.g. we are not assuming (E, d) is complete. The hypotheses say only that this par-
ticular Cauchy sequence (pn)∞n=1 has a convergent subsequence, not that every sequence
has a convergent subsequence, and not that every Cauchy sequence has a convergent
subsequence.)

B6. (This problem is essentially a continuation of B2b. We had not yet defined all the
terminology in this problem when B2 was posted.)

3Some mathematicians use the term “strongly equivalent” for metrics related to each other as in
problem B2. What these mathematicians call “equivalent metrics” is what I call “topologically equivalent
metrics”. However, for norms, there is universal agreement on the terminology “equivalent”.
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Let d1 and d2 be two metrics on a nonempty set E. For i ∈ {1, 2}, call a sequence
di-Cauchy if it is Cauchy in (E, di).

(a) Prove that a sequence in E is d1-Cauchy iff the sequence is d2-Cauchy.
(b) Prove that (E, d1) is complete iff (E, d2) is complete.

B7. Let (E1, d1) and (E2, d2) be metric spaces. In earlier homework (Rosenlicht, p. 61/1c)
you showed that the function d : (E1 × E2)× (E1 × E2)→ R defined by

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}

is a metric on E1 × E2.

(a) Show that the function d′ : (E1 × E2)× (E1 × E2)→ R defined by

d′((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2),

is also a metric on E1 × E2.

(b) Show that the metrics d and d′ on E1 × E2 are equivalent. (Reminder: “Show”
always means “Prove”.)

(c) Show that if (E1, d1) and (E2, d2) are complete, then so are (E1 × E2, d) and
(E1 × E2, d

′).

(d) Repeat parts (a), (b), and (c) for the function d′′ : (E1 × E2) × (E1 × E2) → R
defined by

d′′((x1, x2), (y1, y2)) =
√

d1(x1, y1)2 + d2(x2, y2)2 .
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