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CARDINALITY OF THE REALS

In these notes we show that R, the set of real numbers, has the same cardinality
as P(N), the power set of the set N of natural numbers.

Our argument will proceed in two stages (each with several steps): first, showing
that the interval [0, 1) ⊂ R has the same cardinality as P(N), and second, showing
that [0, 1) has the same cardinality as the whole set R. We assume that the “infinite
decimal” model of R has been established, and that the uncountability of P(N) has
been established.1

These notes were written for students in David Groisser’s fall 2018 MAA 4211
class, so certain additional facts are assumed that, at the time of this writing, have
already been seen by these students in class or in homework.

Some notation and conventions used in these notes.

• (Convention on the meaning of “natural number”)

N = the set of natural numbers = {1, 2, 3, . . . } (i.e. 0 is not included in N).2

• Given two sets A and B, the notation “A ∼ B” means that there is a bijection
from A to B.

• For n ∈ N, define Jn = {m ∈ N | m ≤ n} = {1, . . . , n} ⊂ N. Define J0 = ∅.

• (Convention on the meaning of “countable”)

A set S is countable if there exists a subset A ⊂ N such that S ∼ A. Every
finite set is countable. If S is finite and nonempty, there exists a (necessarily
unique) n ∈ N such that S ∼ Jn. An infinite countable set is called countably
infinite.3

• For a set A, the notation “
∣∣A∣∣” is read “the cardinality of A”. For sets A and

B, “
∣∣A∣∣ =

∣∣B∣∣” is synonymous with “A ∼ B”.

1The latter is a special case of the fact for any set X, there never exists a surjective map from
X to P(X).

2This is the I use throughout my Advanced Calculus course, so for my own students, there is no
necessity that I state this convention here. I’m stating it for other readers, and as a memory-aid for
students in my class who are simultaneously taking another class in which the convention is that N
includes 0.

3As with the convention for natural numbers, my own students already know that this is the
convention is used throughout my Advanced Calculus class. There is another convention in which
“countable” means “countably infinite”, and in which a set that is either finite or countably infinite
is called “at most countable”.
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• If A is a finite set and n ∈ N, the notation “
∣∣A∣∣ = n” means

∣∣A∣∣ =
∣∣Jn∣∣

(equivalently, A ∼ Jn ). The notation “
∣∣A∣∣ = 0” means A = ∅.

• “Interval notation” has the customary meaning. In particular, [0, 1) = {x ∈ R |
0 ≤ x < 1}.

“Binary decimals”
An “infinite binary decimal”, or simply “binary decimal”, is a formal expression

.a1 a2 a3 . . . (1)

where an ∈ {0, 1} for each n ∈ [0, 1].4 More precisely, a binary decimal is simply
the above choice of notation for a function f : N → {0, 1}; the relation between the
notation (1) and such a function f is given by identifying f(n) with the digit an (for
each n ∈ N). Below, we will sometimes call such functions f themselves “binary
decimals”.

Modifying some notation used in earlier homework, let 2N denote the set of all
functions from N to {0, 1} (hence the set of all binary decimals). In homework it was
proven that ∣∣2N

∣∣ =
∣∣P(N)

∣∣. (2)

Analogously to what we did for base-10 decimals, call a binary decimal normalized
if it has no infinite strings of 1’s. The set of functions from N to {0, 1} corresponding
to normalized binary decimals is therefore

NBD := {f : N→ {0, 1} | @N ∈ N such that for all n ≥ N we have f(n) = 1} .

The complement of NBD in 2N is thus the set

Z := 2N \ NBD (3)

= {f : N→ {0, 1} | ∃N ∈ N such that for all n ≥ N we have f(n) = 1} .(4)

We can map the set of binary decimals (equivalently, 2N) to the interval [0, 1] ⊂ R
exactly the way we did for base-10 infinite decimals: for each f ∈ 2N and N ∈ N, we
define sN(f) =

∑N
n=1

f(n)
2n

, and define the real number r(f) by r(f) = l.u.b.({SN(f) |
N ∈ N}). Essentially the same proof used for base-10 decimals shows that the map
f 7→ r(f) restricts to a bijection from NBD to [0, 1).

This establishes that ∣∣NBD
∣∣ =

∣∣[0, 1)
∣∣. (5)

To complete stage-one of our argument, we will show that 2N has the same cardinality
as its proper subset NBD. For this we will need some lemmas.

4The term “binary decimal” is, of course, an oxymoron, but I am not aware of any simple,
generally accepted terminology for this object. A binary decimal is simply the base-2 analog of a
base-10 (infinite) decimal with all the digits to the right of the decimal point. In some uses, the
term “binary decimal” allows for an integer a0 to be included to the left of the decimal point, but
in these notes we won’t do that.
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Lemma 1.1 Let X be an infinite set, S ⊂ X a countable subset. Then X has a
countably infinite subset containing S.

Proof: Left to reader.5

Lemma 1.2 Let S be a finite nonempty subset of N, and let n =
∣∣S|. Then there

exists a bijection ψ : N→ N such that ψ(S) = Jn.

Proof: Left to reader.

Lemma 1.3 Let X be an uncountable set, S ⊂ X a countable subset, and A a
nonempty countable set. Then

(a) X \ S has the same cardinality as X.

(b) X
⋃
A has the same cardinality as X.

Proof: (a) If S is empty there is nothing to show, so assume S 6= ∅.
The set X \ S is uncountable, since otherwise X would be the union of two

countable sets (S and X\S), hence would be countable. In particular, X\S is infinite,
hence (by Lemma 1.1) contains a countably infinite subset S1. Then S̃ := S

⋃
S1 is

countably infinite: it is countable since it is the union of two countable sets, and
infinite since it contains the infinite set S1. Let ϕ : S̃ → S1 be a bijection; such ϕ
exists since all countably infinite sets have the same cardinality.

Define f̃ : X → X by

f̃(x) =

{
x if x /∈ S̃,
ϕ(x) if x ∈ S̃.

It is easily seen that f̃ is injective and that its range is (X \ S̃)
⋃
S1 = X \ S.

Defining f : X → X\S by f(x) = f̃(x) for all x ∈ X, it follows that f is a bijection.
Hence

∣∣X∣∣ =
∣∣X \ S∣∣.

(b) Let Y = X
⋃
A. Then X = Y \ A′, where A′ = A \ X = A \ (A

⋂
X).

Since every subset of a countable set is countable, A′ is countable. It is easily shown
that every set containing an uncountable subset is itself uncountable; hence Y is
uncountable. Since the set X used in the proof of (a) was an arbitrary uncountable
set, it follows that

∣∣Y \ A′∣∣ =
∣∣Y ∣∣; i.e.

∣∣X∣∣ =
∣∣X ⋃A∣∣.

5Dr. Groisser’s MAA 4211 students have done the following homework exercise: Prove that every
infinite set has a countably infinite subset. The proof of Lemma 1.1 is just a minor modification of
that homework exercise.
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Remark 1.4 In the only uses we will make of Lemma 1.3, the countable set S or A
will either have just one element or will be countably infinite.

Now consider the set Z defined in equation (3). From equation (4), we have

Z =
⋃
N∈N

UN ,

where UN := {f : N→ {0, 1} | f(n) = 1 for all n ≥ N}.

For each N ∈ N, a function f ∈ UN is completely determined by the values f(1), f(2),
. . . , f(N − 1); more precisely by the function f

∣∣
JN−1

(the restriction of f to the set

JN−1, which is the empty set if N = 1). The map f 7→ f
∣∣
JN−1

is easily seen to yield

a bijection from UN to the finite set 2JN−1 := {all functions from JN−1 to {0, 1}}.
Hence Z is a countable union of finite sets (hence a countable union of countable
sets), so by an earlier homework problem, Z is countable.

Corollary 1.5 The sets 2N and NBD have the same cardinality.

Proof: Since P(N) is uncountable and 2N ∼ P(N), the set 2N is uncountable. We
have just seen that the subset Z ⊂ 2N is countable. Since NBD = 2N \ Z, Lemma
1.3 shows that NBD ∼ 2N.

Corollary 1.6 The interval [0, 1) ⊂ R has the same cardinality as P(N).

Proof: Combining results from above, we have P(N) ∼ 2N ∼ NBD ∼ [0, 1).

Stage 1 of our argument is now complete. For Stage 2 we have several options,
depending on how much we are willing to take for granted. The simplest options
require the use of facts we have not yet proven in MAA 4211 as of this writing, but
will prove later in MAA 4211–4212, such as the Intermediate Value Theorem and the
existence and properties of the basic trigonometric functions. We have not yet even
defined “continuous function”, let alone proved anything about continuous real-valued
functions (e.g. the Intermediate Value Theorem); we will do this later in MAA 4211.
The trigonometric functions are developed in MAA 4212.

Below are four ways of showing that R ∼ [0, 1), using progressively less knowl-
edge. The last two ways use nothing that we haven’t proven yet in MAA 4211. The
first two rely on facts we have not yet proven, but I’m including them since these
arguments—especially the first—are the ones that one mathematician would usually
give to another; once you have the background for them it would be silly to hunt for
a proof of “R ∼ [0, 1)” that deliberately avoids using these facts.

Option 1: Assume complete knowledge of the function tan : (−π
2
, π
2
)→ R.
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Assuming the usual properties of the tangent function, the map from the open
interval (0, 1) to R given by x 7→ tan(π(x− 1

2
)) is a bijection. Hence∣∣(0, 1)

∣∣ =
∣∣R∣∣. (6)

As seen earlier in these notes, the interval [0, 1) is uncountable, so by Lemma 1.3,
[0, 1) \ {0} ∼ [0, 1). Hence∣∣P(N)

∣∣ =
∣∣[0, 1)

∣∣ =
∣∣[0, 1) \ {0}

∣∣ =
∣∣(0, 1)

∣∣ =
∣∣R∣∣. (7)

Option 2: Assume the Intermediate Value Theorem and the continuity
of rational functions.

Define f : (0, 1)→ R by f(x) = 1
1−x −

1
x
. By what we are allowing ourselves to

assume in “Option 2”, this function is continuous. Each of the functions x 7→ 1
1−x

and x 7→ − 1
x

is strictly increasing6, so their sum is strictly increasing. It is easily seen
that any strictly increasing function from an interval to R is injective. The function
f achieves arbitrarily large values (given any y0 ∈ R we have f(1− ε) > y0 for ε > 0
sufficiently small) and arbitrarily small values (given any y0 ∈ R we have f(ε) < y0
for ε > 0 sufficiently small). Using the Intermediate Value Theorem, it follows that
f achieves every value in R—i.e. that f is surjective—and hence that f is bijective.
Equations (6) and (7) then follow just as in Option 1.

Option 3: Assume nothing we haven’t proven to date, but still exploit
the function in Option 2.

To simplify some algebra, instead of literally using the function f in Option 2,
we will use the function f : (−1, 1) → R defined by f(x) = 1

1−x −
1

1+x
= 2x

1−x2 . In
class, for any a, b ∈ R with a < b, we exhibited a bijection from (0, 1) to (a, b). Hence
if we show that (−1, 1) ∼ R, it will follow that (0, 1) ∼ R.

Define g̃ : R → R by g̃(y) = y

1+
√

1+y2
. (Here we are using the fact, recently

proven in class, that every positive real number has a unique positive square root, in
order to define “

√
1 + y2”.) It is easily seen that |g̃(y)| < 1 (and thus g̃(y) ∈ (−1, 1))

for all y ∈ R. Define g : R → (−1, 1) by g(y) = g̃(y). As the reader may check
by brute-force substitution, g(f(x)) = x for all x ∈ (−1, 1), and f(g(y)) = y for all
y ∈ R.7 Hence f is a bijection.

6A real-valued function g defined on an interval I ⊂ R is strictly increasing if for all x1, x2 ∈ I
with x1 < x2, we have g(x1) < g(x2)

7The formula for g̃ was not pulled from thin air, of course. One can produce this formula by
writing y = 2x

1−x2 and solving for x in terms of y. For y 6= 0 we must solve a quadratic equation,
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Thus ∣∣(0, 1)
∣∣ =

∣∣(−1, 1)
∣∣ =

∣∣R∣∣, (8)

and the same argument as in Option 1 yields the equality (7).

Option 4: Proceed directly from simple consequences of the Least Upper
Bound property.

Using the Least Upper Bound property, we proved in class that for every real
number y, there is a unique integer n such that n ≤ y < n+ 1. Equivalently, for each
y ∈ R there is a unique pair (n, x) ∈ Z× [0, 1) such that y = n+x. This yields a map
R→ N× [0, 1). Clearly this map is bijective (its inverse is the map (n, x) 7→ n+ x).
Hence ∣∣R∣∣ =

∣∣N× [0, 1)
∣∣. (9)

For any sets A,B,C, if f : B → C is a bijection then the map A × B → A × C
defined by (a, b) 7→ (a, f(b)) is also a bijection. Since we have already established
that [0, 1) ∼ P(N), we therefore have N × [0, 1) ∼ N × P(N). Thus it suffices to
show that N× P(N) ∼ P(N).

For each n ∈ N define ϕn : N → N by ϕn(m) = n + m. Then define h :
N× P(N)→ P(N) \ {∅} by

h(n, S) = {n}
⋃
ϕn(S). (10)

Note that since every element of N is positive, ϕn(S) never contains n itself,
and the minimal element of h(n, S) is always n. Thus if h(n1, S1) = h(n2, S2), we
have n1 = n2, ϕn1(S1) = ϕn2(S2) = ϕn1(S2), and therefore S1 = S2 as well. Hence
h is injective. If S ∈ P(N) \ {∅}, then S has a minimal element, so we may define
S ′ = {m −min(S) | m ∈ S and m > min(S)}. Then h(min(S), S ′) = S. Hence h is
surjective as well as injective.

Thus N × P(N) ∼ P(N)\{∅}. By Lemma 1.3, deleting the single element {∅}
from P(N) does not change the cardinality: P(N)\{∅} ∼ P(N). Hence
N× P(N) ∼ P(N). Combining this with equation (9), we have∣∣R∣∣ =

∣∣N× [0, 1)
∣∣ =

∣∣N× P(N)
∣∣ =

∣∣P(N)
∣∣.

and figure out which of the two roots lies in (−1, 1); the answer is
−1+
√

1+y2

y . We could leave

the definition of g̃(y) in this form for y 6= 0 and separately define g̃(0) = 0. However, multiplying

numerator and denominator of our “y 6= 0” formula by 1+
√

1 + y2 and doing some cancellation, we
arrive at g̃(y) = y

1+
√

1+y2
, which very conveniently gives the right value of g̃(0) as well, and “more

obviously” lies in (−1, 1) than does
−1+
√

1+y2

y .
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