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The Extended Reals

The “extended real number system” (“extended reals”, for short), denoted Rext in
these notes, is a convenient way of dealing with subsets of R and sequences in R that
are (potentially) unbounded. Before we define Rext, however, it is important to state
what Rext is not: Rext is not a field, and Rext is not a metric space. The extended
reals share many properties with the reals, but not all. You should take care not to
make any implicit assumptions about Rext that the notation and terminology may
tempt you to make.

1 The ordered set Rext

Let (F, <) be an ordered field. Define a set Fext to be the disjoint union of F and
two other elements, which we will call Arnold and Zelda:

Fext = F
∐
{Arnold,Zelda}.

We extend the relation “<” from F to Fext by declaring Arnold < x and x < Zelda
for all x ∈ F, and Arnold < Zelda.1 (We do not extend “<” any further; i.e. there
are no other ordered pairs (a, b) ∈ Fext × Fext, with at least one of a, b in the set
{Arnold,Zelda}, such that a < b.)

Exercises
1. Show that the relation < on Fext is transitive.
2. Show that the pair (Fext, <) obeys trichotomy; i.e. show that for all x, y ∈ Fext,

exactly one of the following is true: x < y, y < x, or x = y.

Remark. A totally ordered or linearly ordered set is a pair (S,<), where S is a set
and < is a transitive relation on S for which trichotomy holds. Thus if an ordered
field (F, <) is a totally ordered set, and so is (Fext, <).

From “<”, we define relations “≤, “>”, and “≥” on Fext just as we did for ordered
fields (“x ≤ y” means “x < y or x = y”; “x > y” means “y < x”, etc.). Using these
extended relations, we define the notions of upper bound, lower bound, least upper
bound, and greatest lower bound of subsets of Fext just as we did for the ordered field

1Note that “Arnold < Zelda” is part of the definition of the extended relation; it does not follow
from “Arnold < x and x < Zelda for all x ∈ F.” We proved earlier this semester that the relation
“<” on an ordered field F is transitive, but now we are using the same symbol “<” for a relation on
a different set. The symbol “<” would be a perverse choice of notation if we were defining a relation
that is not transitive, but that fact doesn’t prove that “<” is transitive on Fext. There is no such
thing as “proof by notation”.
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F. Note that every subset of Fext is bounded from above by Zelda, and bounded from
below by Arnold.

Exercise
3. Let us say that Fext has Property B if every subset of Fext has a least upper

bound (in Fext). Show that F has the Least Upper Bound Property if and only if
Fext has Property B. (Note: “Property B” is terminology invented purely for these
notes; it is not a standard term.)

Henceforth the only ordered field we consider is R, the unique ordered field with
the Least Upper Bound Property. We also henceforth use the notation “∞” for
Zelda, and “−∞” for Arnold. We also allow the notation “+∞” for “∞”, so that the
notation “±∞” makes sense.

Exercise
4. Show that every subset of Rext has a greatest lower bound (in Rext).

Note that by Exercises 3 and 4, every subset of Rext has a least upper bound
and greatest lower bound in Rext. However, to maintain the distinction between
subsets of R that are bounded from above in R and those that are not, we do not use
the notation “l.u.b.” when we are talking about subsets of R that are (potentially)
unbounded from above. Similarly, we do not use the notation “g.l.b.” when talking
about subsets of R that are (potentially) unbounded from below. Instead, we have
the following notation and terminology (both for subsets of R and, more generally
for subsets of Rext):

Definition 1.1 Let A be a nonempty subset of Rext. The supremum of A, denoted
sup(A), is the least upper bound in Rext of A. The infimum of A, denoted inf(A), is
the greatest lower bound in Rext of A.

Observe that if A is a bounded, nonempty subset of R, then the above definition
of sup(A) and inf(A) coincides with the definition we have been using this semester.
Thus, Definition 1.1 merely extends our previous definition to cover more cases.

Also observe that if A ⊂ Rext is nonempty, and x ∈ A, then inf(A) ≤ x ≤ sup(A).
Thus, by transitivity,

inf(A) ≤ sup(A). (1.1)

The reason for requiring A to be nonempty in Definition 1.1 is to guarantee that
inequality (1.1) is satisfied for all sets A for which inf(A) and sup(A) are defined.
Every element of Rext is an upper bound and a lower bound of the empty set ∅, so
that the least upper bound of ∅ in Rext is −∞, while the greatest lower bound of ∅
in Rext is ∞. Were we to allow A = ∅ in Definition (1.1), the inequality (1.1) would
fail spectacularly; we would have inf(∅) =∞ and sup(∅) = −∞.

2



2 Sequences and order

Definition 2.1 Let {an}n∈N be a sequence in Rext. We say that {an} converges (in
Rext) to ∞ if for all c ∈ R, there exists N ∈ N such that an > c for all n ≥ N .
Similarly, we say that {an} converges (in Rext) to −∞ if for all c ∈ R, there exists
N ∈ N such that an < c for all n ≥ N . We say that {an} converges in Rext if there
exists L ∈ Rext to which {an} converges.

In the definition above, for L ∈ R, “{an} converges in Rext to L” means “{an}
converges in R to L.”

Exercise
5. Let {an}n∈N be a sequence in Rext. Show that there is at most one L ∈ Rext

such that {an} converges in Rext to L.

In view of the result of Exercise 5, we can define the limit of a sequence that
converges in Rext:

Definition 2.2 Let {an}n∈N be a sequence in Rext that converges in Rext. We define
the limit of {an} in Rext, written limn→∞ an, to be the unique L ∈ Rext such that
{an} converges in Rext to L.

Thus, for a sequence {an} in Rext, and L ∈ Rext,

lim
n→∞

an = L if and only if {an} converges in Rext to L. (2.2)

We use the phrases “limn→∞ an exists in Rext” and “{an} converges in Rext” synony-
mously.

As stated at the beginning of these notes, we have introduced Rext as a conve-
nience for dealing with sequences in R (not Rext) that are potentially unbounded,
and subsets of R that are potentially unbounded. We have allowed Definition 2.2
to cover more general sequences—sequences in Rext—not because we ultimately care
about sequences in Rext, but because sequences in Rext will arise when we define
lim sup and lim inf of real-valued sequences later.

For a sequence {an} in R, we have previously (outside of these notes) defined what
the notation “limn→∞ an = L” means for L ∈ R, and, separately, what it means when
L is the symbol ∞ or −∞. The difference between equation (2.2) and our previous
definition is one of viewpoint. Previously, we’ve said “We write ‘limn→∞ an = ∞’ if
for all c ∈ R, there exists N ∈ N such that an > c for all n ≥ N .” Such wording
defines what the inseparable string of notation “limn→∞ an =∞” means; it does not
assign a meaning to “limn→∞ an”. The equals-sign in “limn→∞ an = ∞” previously
did not have the conventional meaning of “equals”, i.e. that the expressions to the
left and right of “=” are the same element of some set. In the limit-equals-infinity
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case, previously we did not regard limn→∞ an as an element of any set; it was just part
of the notation “limn→∞ an = ∞”. In Definition 2.2 and in equation (2.2), however,
we do regard limn→∞ an as an element of some set (Rext) in the infinite-limit case.

This difference in viewpoint is reflected also in Definition 2.1. Previously we’ve
said that “limn→∞ an = ∞” means that {an} does not converge (or that the limit
fails to exist), but that convergence fails in a very particular way. In equation 2.2,
if limn→∞ an = ∞, the sequence still does not converge in R. But Rext contains an
element we are calling ∞, and we have made a special definition (Definition 2.1) of
what it means for a sequence to converge to this element. Such a definition is necessary
because “converges” is a term we have previously defined only for a sequence in a
metric space, and Rext is not a metric space.

Nothing in these notes supersedes the terminology you learned in Calculus 2 for
the cases “limn→∞ an =∞” and “limn→∞ an = −∞”. For a sequence in R for which
limn→∞ an = ∞, it is still correct to say that the sequence diverges, and it is still
correct to say that the sequence diverges to ∞. “Diverges to ∞” means the same
thing as “converges in Rext to ∞.”

Exercises
6. Let {an} be a sequence in R that converges in Rext to L 6= 0. Prove that there

exists N ∈ N such that for all n ≥ N , an 6= 0 and sgn(an) = sgn(L).2 In class we
proved this for the case L ∈ R, so you need only supply the proof for the cases L =∞
and L = −∞. (Note: the assertion in this problem would remain true if “sequence in
R” were replaced by “sequence in Rext”; I simply am not asking you to spend time
on an additional generalization that is not of much use.)

7. Let {an}, {bn} be convergent sequences in Rext (i.e. sequences in Rext that
converge in Rext), and assume that an ≤ bn for all n ∈ N. Prove that

lim
n→∞

an ≤ lim
n→∞

bn .

8. Prove that every monotone sequence in Rext converges in Rext. (“Monotone”,
as usual, means “monotone increasing or monotone decreasing”, as defined using the
extended relations “≤”, “≥”.) It is acceptable to prove this only for the increasing
case, and to state that the decreasing case is similar.

9. Let {an}n∈N be a sequence in R. For n ∈ N define

a′n = sup{ak : k ≥ n} ∈ Rext,

a′′n = inf{ak : k ≥ n} ∈ Rext.

Show that {a′n} and {a′′n} are monotone sequences in Rext. (Note: by hypothesis we
are excluding ∞ and −∞ as possible values of an, but we cannot exclude them as

2Generally the terminology we use for a statement of the form “there exists N ∈ N such that
for all n ≥ N , the statement P (n) is true” is the simpler, less formal “P (n) is true for n sufficiently
large.”
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possible values of a′n or a′′n. This is the sole reason that we allowed the sequence in
Definition 2.2 to be Rext-valued, rather than requiring it to be R-valued; we needed
a definition that would apply to the sequences {a′n} and {a′′n} in all cases.)

10. (Notation as in Exercise 9). From Exercises 8 and 9, the sequences {a′n} and
{a′′n} always converge in Rext. We define

lim sup
n→∞

an = lim
n→∞

a′n,

lim inf
n→∞

an = lim
n→∞

a′′n.

Prove that

lim inf
n→∞

an ≤ lim sup
n→∞

an,

with equality if and only if {an} converges in Rext.

3 Arithmetic in Rext

Definition 3.1 For c ∈ Rext \ {0}, we define the sign of c, written sgn(c), by

sgn(c) = 1 if c > 0, sgn(c) = −1 if c < 0.

As mentioned earlier, we cannot usefully extend addition and multiplication to
maps Rext ×Rext → Rext; we must restrict the domains of these binary operations.
Similar restrictions also enter the definition of subtraction and division on Rext. Since
these operations extend operations on R—i.e. we are not changing the definitions of
x + y, x − y, xy, or x/y for x, y ∈ R—the definition below is given only for cases in
which at least one of the operands is ±∞. Also, instead of saying “the pair (x, y) is
not in the domain of the map + : Rext ×Rext → Rext”, we simply say “We do not
define x + y,”, or “x + y is not defined,” or “x + y is undefined.” A similar comment
applies to the other arithmetic operations.

Definition 3.2 1. Addition

(a) We define x +∞ =∞ =∞+ x for all x ∈ R
⋃
{∞}.

(b) We define x + (−∞) = −∞ = (−∞) + x for all x ∈ R
⋃
{−∞}.

We do not define “∞+ (−∞)” or “(−∞) +∞”. In particular, ∞ and −∞ do
not have additive inverses.
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2. Multiplication

(a) We define 1 · x = x = x · 1 for all x ∈ Rext.

(b) We define
(−1) · ∞ = −∞ =∞ · (−1)

and
(−1) · (−∞) =∞ = (−∞) · (−1).

For convenience, we also define the notation “−(−∞)” to mean ∞.3 With this
definition, we have (−1) · x = −x for all x ∈ Rext.

(c) For all nonzero c ∈ Rext, we define

c · ∞ = sgn(c) · ∞ =∞ · c

and

c · (−∞) = sgn(c) · (−∞) = (−∞) · c

(making use of the definition in (b) of multiplication by 1 and −1). We do not
define “∞ · 0”, “0 · ∞”, “(−∞) · 0”, or “0 · (−∞)”.4

Note that ∞ and −∞ do not have multiplicative inverses.

Just as for multiplication in R, we often omit the symbol “·” for multipli-
cation (writing xy for x · y) when no ambiguity can result.

3. Subtraction

For x, y ∈ Rext, we define

x− y = x + (−y) if the right-hand side is defined;

otherwise we do not define x− y.

3This does not follow from anything we’ve defined above, or earlier this semester. Recall that
in a field F, “−x” was defined to mean “the additive inverse of x” for x ∈ F. But Rext is not a
field, and −∞ does not have an additive inverse. Observe also that defining −(−∞) =∞ is defining
notation only; it is not the definition of an operation.

4For students who’ve heard of measure theory, or may eventually take a course on measure theory:
in measure theory it is common to define 0 · (±∞) = 0 = (±∞) · 0. The rules for arithmetic on
the extended reals are not unique; they are always defined within some context, and are chosen to
simplify, or unify, the writing of certain statements in that context. The context for these notes is
“sequences in R”, and arithmetic on Rext has been defined so as to make Proposition 4.1 (later in
these notes) true. Part 3 of this proposition would be false if we defined 0 ·∞ = 0. In the context of
measure theory, the convenience of having a definition of extended-real arithmetic that unifies certain
measure-theoretic statements about quantities that could be either finite or infinite, outweighs the
convenience of having a definition that unifies statements about sequences whose limits could be
either finite or infinite.
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4. Division

For all c ∈ R, we define

c

∞
= 0 =

c

−∞
.

We do not define ∞∞ , −∞∞ , ∞−∞ , or −∞−∞ . We do not define x
0

for any x ∈ Rext.

(For example, “1
0
” is undefined, even in Rext; it is not assigned the value ∞.)

We also use the notation “x/y” for x
y
”, just as in R.

Observe that for x, y ∈ Rext, x+y is defined if and only if y+x is defined, and the
two quantities are equal when defined. A similar comment applies to multiplication.
Thus these operations are “as commutative as they can be.”

However, note that this commutativity is a consequence of our definitions; it does
not follow from the fact that the symbols “+” and “·” are used for these operations.
Similarly, you cannot assume that other properties of real arithmetic that you’re
familiar with—e.g. associativity of addition and multiplication, and the distributive
law—apply in Rext. Any such property must be proven true before you can use it,
and not all these properties are true in Rext. Fortunately, we rarely come across an
instance in which this matters. Nonetheless, do the following two exercises:

Exercises
11. Let x, y, z ∈ Rext. Consider the (not necessarily valid) equation

(x + y) + z = x + (y + z). (3.3)

(Here it is understood that if x + y is undefined, then so is (x + y) + z; a similar
comment applies to the right-hand side.) Show the following: (i) If the set {x, y, z}
contains both∞ and −∞, then neither side of (3.3) is defined. (ii) If the set {x, y, z}
does not contain both ∞ and −∞, then both sides of (3.3) are defined, and the two
sides are equal.

Thus, addition in Rext is “reasonably associative” in Rext: if one side of (3.3) is
defined, then so is the other, and the two sides are equal.

12. (Multiplicative analog of the previous exercise.) Let x, y, z ∈ Rext. Consider
the (not necessarily valid) equation

(xy)z = x(yz). (3.4)

(Here it is understood that if xy is undefined, then so is (xy)z; a similar comment
applies to the right-hand side.) Show the following: (i) If the set {x, y, z} contains
both 0 and either ∞ or −∞, then neither side of (3.4) is defined. (ii) In all other
cases, both sides of (3.3) are defined, and the two sides are equal.

Thus, multiplication in Rext is “reasonably associative” in Rext, in the same sense
as for addition.
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In contrast, the (would-be) distributive law behaves very badly in Rext. For
example, consider the (not necessarily valid) equation

∞ · (1− 2)
?
=∞ · 1−∞ · 2. (3.5)

The left-hand side is perfectly well-defined; it equals ∞ · (−1), hence −∞. On the
right-hand side, both ∞· 1 and ∞· 2 are defined; they both equal ∞. But ∞−∞ is
not defined, so the right-hand side of (3.5) is not defined. So, in Rext, it is possible
for one side of the (not necessarily valid) equation “c(x+ y) = cx+ cy” to be defined
without the other side being defined.

It is not worth the trouble to classify the triples (c, x, y) ∈ Rext ×Rext ×Rext for
which either both sides of “c(x + y) = cx + cy” are defined or neither side is defined,
nor is it worth the trouble to figure out whether both side are equal when both are
defined. Exercise 11 and 12 above are not particularly important in their own right.
Rather, the reason that they’ve been included in these notes, alongside the example
above concerning distributivity, is to help make you conscious of the following: (i)
there is no such thing as “proof by notation”; and (ii) just because some generalization
of some statement is true, you cannot “reason by analogy” that some other similar-
in-spirit generalization is true. Unlike establishing two analogous facts by analogous
proofs, “reasoning by analogy” is not a method of proof; it’s an excuse for not taking
the trouble to try to prove something.

4 Rext and the arithmetic of sequences in R

As mentioned earlier, the reason for introducing Rext is so that certain infinite-limit
statements that are analogous to finite-limit statements can be written efficiently,
combining the finite-limit and infinite-limit cases into a single statement. The defi-
nition of arithmetic in Rext was chosen to make the proposition below true. In this
proposition, if we allowed the sequences {an}, {bn} to lie in Rext, rather than requir-
ing them to lie in R, all the conclusions would still be true. The reason we have not
stated the proposition in this greater generality is that our purpose here is not to
state or prove anything about sequences in Rext, except as a tool to state or prove
something about real-valued sequences. The extended reals are only a means to this
end.

Proposition 4.1 Let {an}∞n=1, {bn}∞n=1 be sequences in R that converge in Rext. Then
the following are true. (All limits below are considered to be limits in Rext.)

1. limn→∞(an+bn) = limn→∞ an+limn→∞ bn if the right-hand side of this equation
is defined.
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2. limn→∞(an−bn) = limn→∞ an−limn→∞ bn if the right-hand side of this equation
is defined.

3. limn→∞(anbn) = (limn→∞ an)·(limn→∞ bn) if the right-hand side of this equation
is defined.

4. limn→∞(an/bn) = (limn→∞ an)/(limn→∞ bn) if the right-hand side of this equa-
tion is defined.

Note that in statement 4, we do not have to insert the assumption “limn→∞ bn 6= 0”
explicitly, since if “limn→∞ bn = 0” then (limn→∞ an)/(limn→∞ bn) is not defined.
However, in statement 4, we are using the result of Exercise 6, and the convention
that if {bn} is a sequence for which bn is nonzero for all n sufficiently large, but is zero
for some values of n, then the sequence {an/bn} is considered to have initial index n0,
where n0 is any index for which bn 6= 0 for all n ≥ n0.

Exercises
13. Prove Proposition 4.1.

14. One case of part 1 of Proposition 4.1 is the case in which {an} converges in R
and {bn} converges in Rext to ∞ or −∞. Prove the following generalization of this
case: If {an}∞n=1, {bn}∞n=1 are sequences in R, with {an} bounded (but not necessarily
convergent) and {bn} converging in Rext to ∞ or −∞, then limn→∞(an + bn) =
limn→∞ bn (= ±∞).

15. One case of part 3 of Proposition 4.1 is the case in which {an} converges in R.
Prove the following generalization of this case: If {an}∞n=1, {bn}∞n=1 are sequences in R,
with lim inf

n→∞
|an| > 0 and with all an having the same sign s ∈ {±1} for n sufficiently

large, and with {bn} converges in Rext to∞ or−∞, then limn→∞(anbn) = s·limn→∞ bn
(= ±∞).
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