
MAA 4211, Fall 2019—Assignment 3’s non-book problems

B1. (a) Let Z be any nonempty set, and let Func(Z,R) denote the set of all functions
Z → R. As temporary notation, just for this problem, let 0 denote the constant function
with value 0 (i.e. 0(z) = 0 for all z ∈ Z). For f, g ∈ Func(Z,R) and c ∈ R we define
f + g ∈ Func(Z,R) and cf ∈ Func(Z,R) by

f + g = the function z 7→ f(z) + g(z),

cf = the function z 7→ cf(z).

Check that, with the operations above, Func(Z,R) is a vector space with zero-element 0.

(b) Let R∞ denote the set of all functions N→ R. For f ∈ R∞, one of the notations we
commonly use is (x1, x2, x3, . . .), where for each n ∈ N the number xn is f(n). Thus an
element of R∞ is also called an infinite sequence in R. By part (a), R∞ is a vector space.
Check that, in the sequence-notation above, the operations and zero-element in R∞ (as
defined in part (a)) are given by

(x1, x2, x3, . . .) + (y1, y2, y3, . . .) = (x1 + y1, x2 + y2, x3 + y3, . . .),

c(x1, x2, x3, . . .) = (cx1, cx2, cx3, . . .),

0 = ~0 := (0, 0, 0, . . .).

(c) A real-valued sequence ~x = (x1, x2, x3, . . .) ∈ R∞ (switching from the notation “f”
in part (b)) is called bounded if the set {|xn| : n ∈ N} is bounded; equivalently, if there
exists M ∈ R such that for all n ∈ N we have |xn| ≤ M . Let R∞b ⊂ R∞ denote the set
of bounded real-valued sequences. Show that R∞b is a vector subspace of R∞.

(d) For any ~x ∈ R∞b , the set {|xn| : n ∈ N} is nonempty and bounded above, hence has
a least upper bound. Therefore we can define a function ‖ ‖∞ : R∞b → R by

‖~x‖∞ := sup{|xn| : n ∈ N}.

(Here, “sup”, which stands for “supremum”, is synonymous with “least upper bound”,
and is actually the more commonly used term except when the focus is on properties of
the real-number system.1 It’s pronounced like “soup”.) Show that ‖ ‖∞ is a norm on the
vector space R∞b . (Note: the “∞” subscript in ‖ ‖∞ has nothing to do with the “∞”
superscript in R∞. Rather, the notation for this norm comes from the analogous norm on
Rn, where we can replace “sup” by “max”.) We call this norm the `∞-norm or sup-norm
on R∞b .

(e) Let d∞ denote the metric on R∞b associated with the `∞ norm; we call d∞ the `∞

metric on R∞b . Check that d∞ is given by

d∞(~x, ~y) = sup{|xn − yn| : n ∈ N}.
1The concept of supremum is actually more general than “least upper bound”, but reduces to “least

upper bound” for subsets of R that are bounded above. We may discuss the more general usage later in
the course.
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B2. Let (V, ‖ ‖) be a normed vector space, viewed as a metric space with the associated
metric. Show that for all v ∈ V ,

for each r > 0 we have Br(v) = {v + w | w ∈ Br(0)},

and

for each r ≥ 0 we have Br(v) = {v + w | w ∈ Br(0)}.

In other words, each open (respectively, closed) ball centered at a given v is simply the
translation, by v, of the open (respectively, closed) ball of the same radius centered at the
origin.

Note: (1) In each of the displayed statements above, the symbol “0” has two different
meanings. You are expected to be able to tell, from context, what each meaning
is. (2) Usually, allowing the same notation to have two different meanings in the
same sentence (or paragraph, proof, etc.) is a terrible idea, deserving of a bad-
writing penalty. The multiple-meanings use of “0” is an exception to this rule, and
you’ll find “0” used this way by most mathematicians and in most textbooks. One
reason is that there’s a zero element of every field, every vector space, and, more
generally, every abelian group2; using different notation for each zero-element can
lead to hard-to-read clutter. Another reason for making this exception is that “0”
isn’t usually a symbol you introduce; you treat it as having already been introduced,
for every algebraic structure that has an element called “zero”, prior to your having
started writing. Nonetheless, sometimes, as in problem B1, using different notation
for different zero-elements is nearly essential to prevent confusion.

B3. Let (E, d) be a metric space and let X ⊂ E be a nonempty subset. For r > 0 and
p ∈ X, let BE

r (p) and BX
r (p) denote the open balls of radius r and center p in the metric

spaces (E, d) and (X, d|X) respectively. (As stated in class, ‘d|X ’ is “abuse of notation”

that we’re allowing for ‘d|X×X ’.) Similarly, let B
E
r (p) and B

X
r (p) denote the closed balls

of radius r and center p in the metric spaces indicated by the superscripts. Show that,
for all such r and p,

BX
r (p) = BE

r (p)
⋂
X

and B
X
r (p) = B

E
r (p)

⋂
X.

B4. Let (E, d) be a metric space, let X ⊂ E be a nonempty subset. For purposes of this
problem, let us refer to the open (respectively, closed) subsets of (E, d) as being E-open
(respectively, E-closed), and refer to the open (respectively, closed) subsets of (X, d|X) as
being X-open (respectively, X-closed).

2Ignore the last statement if you don’t know what an abelian group is. It’s something you’d learn
about in a course in abstract algebra, which is not a prerequisite for this class, and is not a concept we’ll
be using.
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(a) Show that a subset U ⊂ X is X-open if and only if there is an E-open subset W
such that U = X

⋂
W .

Hint: Use problem B3 and the propositions on pp. 39–40 of Rosenlicht. (These
propositions were combined into what was called “Proposition 1” in class on Wednesday
10/2/19.) You will not need all of the proposition on p. 39, just part of it.

(b) Show that the analogous statement is true with “open” replaced by “closed”:
a subset U ⊂ X is X-closed if and only if there is an E-closed subset W such that
U = X

⋂
W .

B5. Define a metric d on the set of rational numbers Q by d(x, y) = |x−y| (the “standard
metric on Q”, simply the restriction to Q of the standard metric on R). Give an example,
with proof, of a nonempty, proper subset of (Q, d) that is both open and closed in this
metric space. (Do not expect your subset to be either open or closed in R, let alone both
open and closed in R. As we will see in a few weeks, there is no nonempty, proper subset
of R that is both open and closed with respect to the standard metric.)

B6. Let n ≥ 1 and let En denote Euclidean n-space. Let p ∈ En, r ≥ 0. Prove that the
closed ball Br(p) is not an open set.

Remember: (i) “Closed” does not imply “not open”. The fact that a closed ball is a closed

set doesn’t imply that a closed ball can’t also be an open set. (In fact, in one of the Rosenlicht

problems you will see an example in which every ball is simultaneously an open set and a closed

set.) (ii) There is no such thing as “proof by picture”. If you are asserting, for example, that a

certain open ball contains points of some other set, you have to prove that assertion, not merely

assert that it’s true because it looks that way in a picture you’ve drawn. (That’s an instance

of “proof by lack of imagination”: you believe that some fact is true simply because you can’t

think of an example in which that fact would be false, and then assert that that fact is true

without supplying any logical argument, e.g. proof by contradiction, that relies only on the

given hypotheses and previously proven facts.)

B7. Let (E, d) be a metric space. For purposes of this problem, for each p ∈ E define a
property we’ll call “boundedness with respect to p” as follows: a set S ⊂ E is bounded
with respect to p if S is contained in some ball centered at p.

Let p ∈ E. Show that for every S ⊂ E, the following are equivalent:

(i) S is bounded with respect to p.

(ii) S is bounded.

(iii) S is bounded with respect to q for every q ∈ E.
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B8. Let (E, d) = E2 (Euclidean 2-space). Let p ∈ E and let r > 0.

(a) Show that Br(p) = Br(p) (i.e. the closure of an open ball is the closed ball with
the same center and radius). Note: This is not true in every metric space! See problems
B9 and B10.

(b) Show that ∂Br(p) is the sphere of radius r centered at p, defined as {q ∈ E |
d(p, q) = r}. (This is the general definition of “sphere” for an arbitrary metric space;
spheres in E2 are circles.) Note: This is also not true in every metric space!

(c) Re-do parts (a) and (b) with E2 replaced by an arbitrary normed vector space
(V, ‖ ‖). Once (a) and (b) are done, you should find this easy; if not, then your arguments
in (a) and (b) are probably wrong.

B9. Let (E, d) be a metric space, p ∈ E, and r > 0. Let Sr(p) denote the sphere of radius
r centered at p.

(a) Prove that ∂(Br(p)) ⊂ Sr(p).
(b) Prove that Br(p)) = Br(p) if and only if ∂(Br(p)) = Sr(p).

B10. Give an example of a metric space E in which there is an open ball Br(p) whose
closure is not the closed ball Br(p). (You have already encountered a metric space with
this property.)

Note that in view of problem B9(b), for any such ball we have ∂(Br(p)) 6= Sr(p).
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