
MAA 4211, Fall 2019—Assignment 6’s non-book problems

Problems B1 and B2(c) are intended to help you better relate the formal meaning of
“connected subset of a metric space” to the intuitive notion of what it sounds like this
terminology ought to mean.

B1. Let (E, d) be a metric space, S ⊂ E. Prove that the following are equivalent:

(i) S is not connected.

(ii) There exist nonempty subsets A,B ⊂ S such that
S = A

⋃
B and A

⋂
B = ∅ = A

⋂
B. (Here A and B denote the closures of A

and B in E, not in the subspace (S, d).)

Some things to note: (1) Under the conditions on sets A,B in (ii), we automatically have
A
⋂
B = ∅, so S = A

∐
B. For arbitrary subsets A,B ⊂ E, the condition “A

⋂
B = ∅”

is stronger (more restrictive) than “A
⋂
B = ∅.” (2) In (ii), we are not assuming that A

and B are open in (S, d). (Openness in (S, d) will end up being a consequence of what
we’ve assumed, but it’s not one of our assumptions.) (3) The equivalence of (i) and (ii)
is interesting primarily for proper subsets S ( E. When S = E, the equivalence can be
deduced quickly from the definition of “connected metric space”.

B2. Let (E, d) be a metric space, S ⊂ E a nonempty subset, and p ∈ E. The distance
from p to S, which we will write as dist(p, S), is defined to be g.l.b.{d(p, q) | q ∈ S}. As
you were asked to prove on the first midterm, and as proven in the handed-out solutions,
dist(p, S) = 0 if and only if p ∈ S.

(a) For (E, d) = E2, give an example of each of the following.

(i) A subset S and a point p /∈ S for which the g.l.b. defining dist(p, S) is not
achieved.

(ii) A subset S and a point p /∈ S for which the g.l.b. defining dist(p, S) is
achieved. (Note that “The g.l.b. defining dist(p, S) is achieved” is equivalent to “There
is a point q ∈ S that, among all points in S, minimizes distance to p.”)

(b) For purposes of this problem, call S non-connected if S is not connected.1 Using
part (a) and the result of B1, prove that S is non-connected if and only if S = A

⋃
B

1Although it is tempting to use the term “disconnected” for “not connected”, topologists generally
don’t do this, instead reserving “disconnected” as one piece of the terminology for topological (sub)spaces
that fail in some spectacular way to be connected, such as totally disconnected spaces (see problem B4(g)).
The most common terminology for “not connected” is “not connected”, not “non-connected”. Here I am
using the term “non-connected” because a sentence of the form “S is not connected if and only if . . . ” is
ambiguous—does it mean that “not connected” is equivalent to the specified conditions, or does it mean
“The statement ‘S is connected if and only if . . . ’ ” is false? Make sure you avoid this sort of ambiguous
phrasing in your answers.
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for some nonempty sets A,B ⊂ S for which every point of each set is a positive distance
from the other set (i.e. dist(p,B) > 0 for all p ∈ A, and dist(p,A) > 0 for all p ∈ B).

Motivation for part (b): Recall that, heuristically, we wanted “S is not connected” to
mean that S cannot be partitioned into two nonempty disjoint subsets that “don’t touch
each other”. There is no official definition of one subset of a metric space touching, or
not touching, another. However, were we (not unreasonably) to define “A does not touch
B” to mean “every point of A is a positive distance from B”, then the characterization
of non-connectedness in this problem would turn the heuristic characterization of “not
connected” into a precise one that agrees with the mathematical definition.

B3. Let (E, d) be a metric space, S ⊂ E a connected subset. Prove that the closure of S
is connected.

B4. Note: This problem is a special case of B5 (except that the parenthetic instruction
in B4(a) does not apply to B5). If you can do B5 right away, you do not need to do B4.
But you may find B4 to be a good warm-up for B5.

(a) Let a ∈ R. Prove that in E2, the subsets R × {a} and {a} ×R are connected.
(You may just write out the proof for R× {a} and say that “The proof that {a} ×R is
connected is similar.” The two proofs are virtually identical, modulo obvious notational
changes.)

(b) Prove that E2 is connected. (Hint: Use part (a) and the second proposition on
p. 60 of Rosenlicht.)

B5. (Generalization of B4.) In this problem, for notational simplicity, we identify Rn×R
with Rn+1 via the bijection ((x1, . . . , xn), y) 7→ (x1, . . . , xn, y).

(a) Let n ∈ N, let a ∈ R, let b = (b1, . . . , bn) ∈ Rn, and let S be a connected subset
of En. Prove that in En+1, (i) S × {a} is connected (ii) {b} ×R is connected.

(b) Prove that for all n ∈ N, the space En is connected. (Hint: In part (a), both “n”
and “n+ 1” appear, which should suggest something to you.)

B6. (This problem gives a second proof of a lemma you were sent by email recently.) Let
(E, d) be a metric space, let (pn)∞n=1 be a convergent sequence in E, let p = limn→∞ pn,
let N ∈ N, and let ε > 0. Assume that for all n,m ≥ N , d(pn, pm) < ε. Use the
appropriate half of the “sequential characterization of continuity” to prove that for all
n ≥ N , d(pn, p) ≤ ε. Hint: Fix n ≥ N , and consider the function f : E → R defined by
f(q) = d(pn, q).

B7. In Rosenlicht p. 91/#3, suppose you remove the hypothesis that the sets S1, S2 are
both closed. Is the conclusion still true? (Prove your answer, of course.)
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