
MAA 4211, Fall 2020—Assignment 2’s non-book problems

B1. Let X := (xn)∞n=1 be a sequence in R, and define sequences Y := (yn)∞n=1 and
Z := (zn)∞n=1 by

yn = x2n−1 for each n ∈ N,

zn = x2n for each n ∈ N.

(In other words, Y and Z are the subsequences of X given by the odd-numbered terms
and even-numbered terms, respectively.) Prove that the following are equivalent:

(i) X converges.

(ii) Both Y and Z converge, and their limits are equal.

Prove also that if condition (ii) holds, then lim(X) = lim(Y ) = lim(Z).

B2. Let X := (xn)∞n=1 be the sequence defined recursively by

x1 =
1

2
,

xn+1 =
1

2 + xn

for each n ∈ N.

(So X is the sequence
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an example of something call a continued fraction.) Prove that X converges and find its
limit.

Hint: prove that the even-numbered subsequence and odd-numbered subsequence
both converge and that their limits are the same. Then apply problem B1.

Warning: You cannot prove that a limit (or anything else) exists by assuming it
exists. However, before you get to the proof stage, there’s nothing wrong asking yourself,
“If the limit existed, what would it have to be?” Intelligent guesswork is part of problem-
solving. Just don’t forget that even if assuming the limit exists leads to only one possible
value for it, that fact doesn’t prove that the limit exists.
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B3. (a) Let Z be any nonempty set, and let Func(Z,R) denote the set of all functions
from Z to R. As temporary notation, just for this problem, let 0 denote the constant
function with value 0 (i.e. 0(z) = 0 for all z ∈ Z). For f, g ∈ Func(Z,R) and c ∈ R we
define elements f + g ∈ Func(Z,R) and cf ∈ Func(Z,R) by

f + g = the function “z 7→ f(z) + g(z)”, (1)

cf = the function “z 7→ c · f(z)”. (2)

Check that, with the operations above, Func(Z,R) is a vector space with zero-element 0.
(Look up the definition of “vector space”, which you probably haven’t reviewed since you
took MAS 4105, to make sure you’re checking everything that needs to be checked.)

(b) Let R∞ denote Func(N,R)—i.e. the set of all real-valued sequences. The idea
behind the notation “R∞” is that can think of a sequence in R as an “ordered ∞-tuple”,
or infinite list, of real numbers. When we have this mental point of view, we often put a
left-parenthesis in front of the list, and sometimes at the end, as in

(x1 , x2 , x3 , . . .

or
(x1 , x2 , x3 , . . . ).

By part (a), R∞ is a vector space (when we equip R∞ with the operations defined in
equations (1) and (2)).

(i) Check that these operations correspond precisely to the notations “X + Y ” and
“cX” introduced in class (and in B&S, p.63). I.e. check that if X = (xn)∞n=1 and Y =
(yn)∞n=1 are real-valued sequences, and c ∈ R, then X + Y as defined by equation (1) is
the sequence whose nth term is xn + yn, and that cX as defined by equation (2) is the
sequence whose nth term is cxn.

(ii) In “list form”, what is the zero element of R∞ ?

(c) Let R∞b ⊆ R∞ denote the set of bounded real-valued sequences. Show that R∞b is a
vector subspace of R∞.

Remark. For n ∈ N, writing elements of Func(Nn,R) (where Nn = {1, 2, 3, . . . , n})
in “list form”—in this case, a finite list—we see that there is a natural bijection from
Func(Nn,R) to Rn. Under this bijection, the operations on Func(Nn,R) correspond to
the usual vector-space operations on Rn. This is additional motivation for the notation
“R∞ ”.
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