
MAA 4211, Fall 2020—Assignment 3’s non-book problems

B1. Let X := (xn)∞n=1 be a bounded sequence in R. Prove that limX exists if and only
if lim inf X = lim supX (Proposition 15.2 in the lecture notes).

B2. Let X be a bounded sequence in R.

(a) Prove that X has a subsequence converging to lim supX.

(b) Let α = lim supX. In view of part (a), X has a subsequence converging to α.
Prove that α is the largest real number with this property. I.e. prove that if c > α, then
there exists no subsequence of X converging to c.

(c) State the analog of parts (a) and (b) for “lim inf”. Do not write out the analogous
proofs, but summarize briefly what changes would be required in your proofs of (a) and
(b) to prove these analogs.

B3. [This problem has been removed; it asked you to prove something that’s false.]

B4. Let X and Y be bounded sequences in R.

(a) Prove that

lim sup(X + Y ) ≤ lim supX + lim supY.

(b) Give an example showing that the inequality in part (a) can be strict.

B5. Let (xn)∞n=1 be the sequence defined recursively by

x1 = 999,

xn+1 =
xn
2

+
1

xn
+ 1 for n ∈ N.

(a) Prove that this sequence converges.

(b) Compute limn→∞ xn and prove that your answer is correct.(If you do this problem

the way I’m expecting, the way you figure out the value of the limit should amount to a proof

that your answer is correct. You should also find that the “999” could be replaced with any

other positive number without affecting convergence or the value of the limit.)
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B6. Find all cluster points of the subset S of R defined by S = { 1
n

+ 1
m
| n,m ∈ N}, and

prove that you have, indeed, found all the cluster points of S.

(You’re going to find that the second part—proving that there are no cluster points
other than the ones you’ve found—is enormously harder than proving that your found
points are cluster points. Don’t be surprised if you find it harder than anything else I’ve
asked you to prove before.)

B7. (Do the reading in part C of this assignment first.) Prove Theorem 4.3.3 in Bartle &
Sherbert.

B8. Let I ⊆ R be an interval and let b ∈ I. Let I− = {x ∈ I : x ≤ b} and
I+ = {x ∈ I : x ≥ b}. Let f : I → R be a function. [Last sentence was omitted from

original statement of problem.]

(a) Prove that if f |I+ and f |I− are continuous, then f is continuous.

(b) Prove that if f |I+ and f |I− are uniformly continuous, then f is uniformly contin-
uous.

B9. Let A ⊂ R. Given functions f, g : A → R, we define functions max{f, g} : A → R
and min{f, g} : A→ R by

max{f, g}(x) = max{f(x), g(x)} and min{f, g}(x) = min{f(x), g(x)} for all x ∈ A.

Show that if f and g are continuous, then so are max{f, g} and min{f, g}. (Hint: First
show that for all a, b ∈ R, we have max{a, b} = 1

2
(a + b + |a − b|) and

min{a, b} = 1
2
(a+ b− |a− b|).)

Problems B10 and B11 are recommended rather than required.

B10. Let A ⊆ R, let c be a cluster point of A, and let f : A→ R. Call f locally bounded
at c if f is bounded on some neighborhood of c (i.e. if for some δ1 > 0, the restriction of
f to Vδ1(c) ∩ A is bounded).

(a) Assume that f is locally bounded at c, and let δ1 > 0 be such that the restriction
of f to Vδ1(c) ∩ A is bounded. Define wf : (0, δ1)→ R by

wf (δ) := sup( f(Vδ(c) ∩ A) )− inf( f(Vδ(c) ∩ A) )

= sup
{
f(x) | x ∈ A and |x− c| < δ

}
− inf{f(x) | x ∈ A and |x− c| < δ}.

Show that wf is an increasing function.

From a result proven in class (Proposition 25.1), if�follows that limδ→0wf (δ) exists.
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(b) Assume that f is locally bounded at c. Note that if if δ1, δ2 are any positive
numbers for which the restriction of f to Vδi(c) ∩ A is bounded for each i ∈ {1, 2},
then the two functions w̃f : (0, δi) → R define as in part (a) coincide on the interval
(0,min{δ1, δ1}), and hence have the same limit at 0.

We define the oscillation of f at c to be

oscc(f) = lim
δ→0

wf (δ) .

The preceding paragraph shows that oscc(f) is well-defined: it depends only on the func-
tion f and cluster point c, not on the auxiliary number δ1 used to define the domain of
wf .

Show that limc f exists if and only if f is bounded on some neighborhood of c and
oscc(f) = 0.

(d) For the function f : R\{0} → R defined by f(x) = sin( 1
x
), compute osc0(f).

(You may assume that the sine function has its familiar properties.)

B11. Let I ⊆ R be an interval, let f : I → R be a monotone function, and let c ∈ I.
Show that f is bounded on Vδ(c) ∩ I for every δ > 0, and that

oscc(f) = ±jf (c). (1)

When do we get the plus sign in equation (1), and when do we get the minus sign?
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