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Logarithms and Exponentiation

In these notes, we use our results on integration to define the natural logarithm func-
tion and derive its properties. We then use this function to define ar for all a > 0 and
r ∈ R, in a unified way that does not depend on whether r is positive or negative, is an
integer, is rational, or is irrational. We see that this elegant (albeit nonintuitive) defini-
tion is consistent with the usual definition for rational r, and implies that for irrational
exponents, the “intuitive” definition of ar actually works—i.e. that ar can be defined
unambiguously (if inelegantly) as a limit obtained by approaching r through rational ex-
ponents. (It’s very unlikely that the student was shown in high school, or wherever he/she
first encountered irrational exponents, that this definition is unambiguous, i.e. that the
value of the limit does not depend on which of the uncountably many rational sequences
approaching r is used.) We also show that all the usual algebraic “rules of exponents”
follow, and that the functions x 7→ ax (for any a > 0) and x 7→ xr (for any r ∈ R) are
differentiable and have the “expected” formulas for their derivatives. For the function
x 7→ xr with r irrational, this would be extraordinary difficult using only the “intuitive”
definition of xr, but with our unified definition the derivative computations are identical
for all r.

These notes are for my MAA 4211 class, Fall 2020. A reference such as “LN Corollary
35.9” means “Corollary 35.9 in my posted lecture notes” (available only to this class).

1 Logarithmic and exponential functions

Since the function t 7→ 1
t

is continuous on (0,∞), its integral over any closed interval with
endpoints in (0,∞) exists. This allows us to make the following defintion:

Definition 1.1 The function log : (0,∞)→ R is defined by

log x := log(x) =

∫ x

1

1

t
dt (for each x > 0). (1.1)

Remark 1.2 This function “log” is the natural logarithm function that you are probably
used to denoting “ln”. Mathematicians tend to call this function “log” rather than “ln”
(except when teaching lower-level calculus courses and other courses populated largely
by engineering majors), and write “log10” for the function you may be used to denoting
simply as “log”, because log10 has no special mathematical significance. Prior to the age of
pocket calculators, log10 had much greater practical significance than it has now; bankers,
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scientists, and other people who used to need to do a lot of multiplication by hand would
use tables of values of the log10 function in order to reduce multiplication to the addition
of logs. Nowadays, these tasks are done by computers and pocket calculators. The log10

function still survives in a few log10-based scales in the sciences, such as the pH scale in
chemistry and the decibel scale for sound-intensity. We also still use the phrase “order
of magnitude” in a sense coming from the log10 function, since human beings brought up
with base-10 arithmetic naturally find it easy to think in terms of how many powers of
10 are involved.

Proposition 1.3 The function log : (0,∞) → R is differentiable, strictly increasing,
bijective, and satisfies the following for all x, y ∈ (0,∞) and all integers n:

(i) log′(x) = 1
x

(where “log′” denotes the derivative of log.)

(ii) log(1) = 0.

(iii) log(xy) = log x+ log y.

(iv) log( 1
x
) = − log x.

(v) log x
y

= log x− log y.

(vi) log(xn) = n log x.

Proof: Since t 7→ 1
t

is continuous, the Fundamental Theorem of Calculus implies that log
is differentiable and that log′(x) = 1

x
. Since 1

x
> 0 for all x > 0, log is a strictly increasing

(hence injective) function; we will show later that its range is all of R.

Property (ii) is immediate from the defining equation (1.1). To establish property (iii),
let x, y > 0. By LN Corollary 35.9 (a corollary of “additivity of the integral)”, we have

log(xy) =

∫ xy

1

1

t
dt =

∫ x

1

1

t
dt+

∫ xy

x

1

t
dt = log x+

∫ xy

x

1

t
dt. (1.2)

(We use LN Corollary 35.9 rather than the our original “additivity of the integral” result, LN

Proposition 35.4, to ensure that (1.2) is true regardless of the size-order of x, y, and 1, or

whether these numbers are all distinct.) In the last integral in (1.2), we may make the
substitution t = xs (More formally, we define the function ϕ : [min{1, y},max{1, y}] →
[min{x, xy},max{x, xy}] by ϕ(s) = xs. Then ϕ(1) = x, ϕ(y) = xy, and ϕ′(s) = x for all
s.) Applying the change-of-variable theorem (LN Proposition 35.18), we have∫ xy

x

1

t
dt =

∫ y

1

1

xs
x ds =

∫ y

1

1

s
ds = log y.

Hence (1.2) implies that log(xy) = log x+ log y, which is property (iii).
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Property (iv) now follows from properties (ii) and (iii) (since x 1
x

= 1), and property
(v) then follows from properties (iii) and (iv) (since x

y
= x 1

y
).

Property (vi) holds for n = 0 by property (ii), and is true trivially for n = 1. Using
property (iii) and induction, it follows easily that property (vi) holds for all n ≥ 1 (details
are left to the student). From this and property (iv), we then find that property (vi)
holds for n ≤ −1 as well.

We have now proven everything except that the range of log is R. For this, we first
note that since 1

t
≥ 1

2
for t ∈ [1, 2], the order property of the integral (LN Corollary 33.3)

implies

log 2 =

∫ 2

1

1

t
dt ≥

∫ 2

1

1

2
dt =

1

2
,

so

log 2 ≥ 1

2
> 0. (1.3)

Let y ∈ [0,∞), and let n be a positive integer such that n log 2 ≥ y; such n exists since
log 2 > 0. Then, by property (vi), we have log(2n) ≥ y, so y ∈ [log(1), log(2n)]. Since log
is differentiable, log is continuous, so the Intermediate Value Theorem implies that there
exists x ∈ [1, 2n] such that log x = y. Hence log achieves every non-negative real value.
Property (iv) then shows that log achieves every non-positive real value as well, hence
achieves every real value. Thus the range of log is R, as claimed.

Remark 1.4 (A pause to smell the roses) Thanks to our hard work on integration,
up through the FTC (Fundamental Theorem of Calculus), the proof of part (i) of Propo-
sition 1.3 was very short, so let us take a moment to reflect on something we’ve achieved
with the formula “log′(x) = x−1”.

When we first learn calculus, the first functions we learn how to differentiate are the
power-functions x 7→ xn, where n is a positive integer or zero. Shortly thereafter, we work
out the derivative for negative n as well, discovering the beautiful fact that d

dx
xn = nxn−1

for all integers n. Later, when we start to study antidifferentiation, our first tool is
recognition: having seen power-functions arise as derivatives of other power functions, we
can easily invert the process. Since 3x2 is the derivative of x3, we know that any multiple
of x2 will have some multiple of x3 as an antiderivative (where “multiple of” means “constant

times”, and where I’m using Calculus 1 notation and terminology for functions, e.g. “x3” instead

of “x 7→ x3”).

More generally, our derivative formula for integer-exponent power functions tells us
that, for almost every integer n, the function xn is an antiderivative of nxn−1, hence that
xn

n
is an antiderivative of xn−1, hence that xn+1

n+1
is an antiderivative of xn—with only one

exception, the case n = −1. We never see x−1 arising as the derivative of a multiple of a
power function, so at this early stage of our learning in Calc 1, we have no way to find an
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antiderivative. But since x−1 is continuous on (0,∞), LN Theorem 35.12 (“part of” the
FTC) gives us a formula for an antiderivative of x−1. The gap is filled!1

Since log : (0,∞) → R is bijective, it has an inverse, so we may make the following
definition:

Definition 1.5 We define the function exp : R → (0,∞) to be the inverse of
log : (0,∞)→ R.

Proposition 1.6 The function exp : R → (0,∞) is differentiable, strictly increasing,
bijective, and satisfies the following for all x, y ∈ (0,∞) and all integers n:

(i) exp′ = exp (where “exp′” denotes the derivative of exp.)

(ii) exp(0) = 1.

(iii) exp(x+ y) = exp(x) exp(y)

(iv) exp(−x) = 1
exp(x)

.

(v) exp(x− y) = exp(x)
exp(y)

.

(vi) exp(nx) = (exp(x))n.

Proof: The fact that exp is bijective and strictly increasing follow from the fact that it
is the inverse of a function with these properties.

We next show that exp′ = exp. Let y0 ∈ R and let x0 = exp(y0) (thus y0 = log x0).
Since log′(x0) = 1

x0
6= 0, LN Proposition 28.3 ensures us that exp is differentiable at y0

and that

exp′(y0) = ((log)−1)′(x0) =
1

log′(x0)
=

1

1/x0
= x0 = exp(y0)

Since y0 was arbitrary, we conclude that exp is differentiable and that exp′ = exp .

Properties, (ii)—(vi) of exp follow from the corresponding properties for log. For
example, for (iii), given any x, y ∈ R, by the bijectivity of log there exist unique a, b ∈
(0,∞) such that x = log a and y = log(b). We then have

x+ y = log a+ log b = log(ab) = log(exp(x) exp(y)),

implying that exp(x + y) = exp(log(exp(x) exp(y))) = exp(x) exp(y). Derivations of the
remaining properties are left to the student.

1Unfortunately, the all-too-popular “early transcendentals” calculus textbooks rob students of an
appreciation of how marvelous this is, and make it difficult for them to fall in love with calculus.
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Consider now any positive, real number a. Letting x = log a, property (vi) in Proposi-
tion 1.6, read from right to left, says that for any integer n we have an = exp(n log a). In
view of this fact, the following definition does not alter the meaning of an for any integer
n, but gives meaning to “ an ” for all real n:

Definition 1.7 Let a, r ∈ R, with a > 0. We define the number ar ∈ (0,∞) by

ar = exp(r log a).

The next proposition may be summarized as saying that the “usual algebra of expo-
nentiation” for integer exponents holds more generally for real exponents.

Proposition 1.8 Let a, b, x, y ∈ R, with a > 0 and b > 0. Then:

(i) a0 = 1.

(ii) ax+y = axay.

(iii) a−x = 1
ax

.

(iv) (ax)y = axy.

(v) (ab)x = axbx.

(vi) If a > 1 then the map x 7→ ax is strictly increasing; if a < 1 then this map is strictly
decreasing.

Proof: All these properties follow quickly from Proposition 1.6 and Definition 1.7. For
example, for (ii) we have

ax+y = exp((x+ y) log a) = exp(x log a+ y log a) = exp(x log a) exp(y log a) = axay.

The remaining parts of the proof are left as an exercise to the student.

Exercise 1.1 Complete the proof of Proposition 1.8.

Observe that Definition 1.7 says nothing about how to define 0r. Of course, if r is a
positive integer, we already have a purely algebraic definition of 0r, yielding 0r = 0. Using
the fact that for positive integers n, the unique nth root of 0 is 0, we can naturally extend
the definition “0r = 0” to all positive rational r. But irrational r cannot be handled by
these purely algebraic means. For these, we need a separate definition, which we will
write in a way that applies in both the rational-r and irrational-r cases:
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Definition 1.9 For every r > 0, we define 0r = 0.

We do not define the expression “ 0r ” for r ≤ 0; in particular, we do not define “ 00 ”.

Exercise 1.2 Determine how Proposition 1.8 generalizes if we allow a ≥ 0 and/or b ≥ 0.
Are any restrictions on x and/or y needed (possibly different restrictions for different
parts of the proposition)? If so, what?

Exercise 1.3 (Just for fun) Parts (a) and (b) of this exercise can be done in either
order; neither is likely to help you much with the other. Part (a) can be used to help with
part (b)—it’s obvious that (b) is somehow related to (a)—but there’s an easier, indepen-
dent approach to part (b) that doesn’t require figuring out this “somehow” precisely.

As you know, 24 = 42. You can probably convince yourself quickly, and perhaps even
come up with a proof, that there are no other distinct integers n,m for which nm = mn.
(Certainly for fixed n—e.g. n = 2—you should be able to understand intuitively why as
m → ∞ we have nm >> mn; “the larger exponent eventually wins”.) But what if we
remove the “integer” requirement?

(a) Graph the relation {(x, y) ∈ R2 | x, y > 0 and xy = yx}. (Observe that the graph
contains the ray {y = x > 0}, but also contains the points (2, 4) and (4, 2) that are not
on this ray. Surely there must be some other points . . . )

(b) Without using a calculator, determine which is greater: eπ or πe? (You are allowed
to use the fact that e < π.) Note that since 24 = 42, and both e and π are close to 3, it
is not at all clear whether “the larger exponent wins”.

Remark 1.10 (Rational exponents) Proposition 1.8 shows that Definition 1.7 is con-
sistent with our prior definitions of ar for rational exponents r. For example, for a > 0
and n a positive integer, Proposition 1.8(iv) shows that (a1/n)n = an/n = a. Since the
function x 7→ xn is strictly increasing on (0,∞), the number a1/n is therefore the unique
positive real number c such that cn = a, i.e. the (positive) nth root of a. Similarly, if p, q
are integers and q 6= 0, Proposition 1.8 shows that, consistently with prior definitions of
“ap/q”, we have

(a1/q)p = ap/q = (ap)1/q. (1.4)

However, Definition 1.7 gives a much “cleaner”, if less intuitive, definition of ar for r ∈ Q
than does taking either the first or second equality in (1.4) to be the definition of ap/q,
because a rational number does not have a unique expression as a quotient of integers; e.g.
2
3

= 16
24

= −42
−63 . When we attempt to use (say) the first equality in (1.4) as the definition

of ap/q when p, q are positive integers, we must do one of the following in order to ensure
that ap/q is well-defined: (1) require that the exponent be expressed in “lowest terms”, i.e.
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with p and q having no common divisor greater than 1, or (2) show that if p
q

= p′

q′
, where

p, q, p′, q′ are positive integers, then (a1/q
′
)p
′

= (a1/q)p. (Since every rational number can
be expressed in lowest terms, (2) can be reduced to the case in which p′ = kp and q′ = kq
for some positive integer k.) Approach (1), however, becomes insufficient the moment we
try to show that rational exponents obey property (ii) in Proposition 1.8, based only on
the algebra of integer exponents and on a definition of ap/q that requires p and q to be
relatively prime. For example, 1

5
+ 3

10
= 1

2
, but you will not likely succeed in showing that

a1/5a3/10 = a1/2 without knowing that a1/5 = (a1/10)2 and that (a1/10)5 = a1/2. Similarly,
you will have difficulty showing that 20.6 > 20.5 without knowing that (21/5)3 = (21/10)6

and that 21/2 = (21/10)5. Thus, if we attempt to take (1.4) as the definition of ar for
rational non-integer r, then to obtain the results of Proposition 1.8 even just for rational
exponents, based on knowing them for integer exponents, we are forced to prove (at least)
that (a1/kq)kp = (a1/q)p for all positive integers p, q, and k. This is not difficult to prove,
but the necessity of proving it can’t be avoided if we attempt to use one of the equalities
in (1.4) as the definition of ar for non-integer rational r.

Remark 1.11 You may be accustomed to thinking that the algebraic rules in Proposition
1.8 are “obvious”, even though you likely have been using one of the equalities in (1.4)
as the definition of ar when r is rational, positive, and expressed in lowest terms, and
have likely been taking Proposition 1.8(iii) as the definition of ar when r is rational and
negative. There is nothing incorrect about these prior definitions. However, as Remark
1.10 shows, if we use these prior definitions then the algebraic rules in Proposition 1.8
are not at all obvious once we leave the realm of integer exponents. There’s a difference
between something being obvious because we understand why it’s true, and thinking it
“obvious” because we memorized it and were told it was true.

Remark 1.12 (Irrational exponents, part 1) Modern students, having grown up
with pocket calculators that have an “xy ” button on them, may be not be conscious
of the fact that there is nothing obvious about what an expression like “ 2

√
2 ” should

mean. We can use equation (1.4) to define what it means to raise a number to a rational
exponent, but this equation says nothing about irrational exponents.

Let r be an irrational number. We may attempt to define ar in an ad hoc manner,
using the decimal expansion of r as a sequence in Q approaching r from below (e.g. using
the fact that

√
2 is the limit of a sequence 1, 1.4, 1.41, 1.414, 1.4142, . . . ), and tentatively

defining ar to be the limit of this sequence. Why should the limit exist? If we first do the
work mentioned in Remark 1.10, we can then show that this sequence is monotone and
bounded, hence convergent. But that’s not entirely satisfying (nor can it be rigorously
justified early in Calculus 1, let alone prior to calculus): should the value of the number
ar depend on the fact that humans have 10 fingers (the reason that we chose the decimal
expansion of r)? For rational exponents there is no such dependence, so we would certainly
hope that there is none for irrational exponents either. This leads us to want to prove at

7



least the following: if (rn)∞n=1 is an increasing sequence of rational numbers approaching
r, does limn→∞ a

rn is independent of the choice of the sequence (rn).

Even this is not wholly satisfying. What if we had chosen a sequence (rn) that
decreases to r instead of increasing to r? (For example, if r = −

√
2, the sequence

−1,−1.4,−1.41,−1.414,−1.4142, . . . is a decreasing sequence.) What if we had chosen a
non-monotonic sequence (rn) with limit r? Do we always get the same limit? Using (1.4)
it is, indeed, possible to prove that limn→∞ a

rn exists for every sequence in Q converging
to r, and that the value of this limit is independent of the choice of sequence (rn).2 Using
this limit to define ar, we then have a definition of ar that is valid for all real r and all
a > 0. Can we then prove Proposition 1.8 based on this approach? Yes, but still more
work is involved, and some questions with non-obvious answers have to be addressed. By
contrast, when we use Definition 1.7 to define ar for all real r, we have a definition that
works simultaneously for rational and irrational exponents, that looks identical for all real
exponents, and that renders the proof of Proposition 1.8 essentially trivial.

Definition 1.13 The number e ∈ R is defined by e = exp(1).

From Definitions 1.7 and 1.13, we immediately have

ex = exp(x)

for all x ∈ R.

Proposition 1.14 Let a, r ∈ R, with a > 0. The function R → R defined by x 7→ ax,
and the function (0,∞) → R defined by x 7→ xr, are differentiable, and their derivatives
are given by the following formulas:

(i) d
dx
ax = ax log a.

(ii) d
dx
xr = rxr−1.

Proof: (i) Define f, g : R → R by f(x) = ax and g(x) = x log a. Then, by definition,
f = exp ◦ g. Since exp and g are differentiable, the Chain Rule Theorem implies that f
is differentiable and that f ′(x) = exp′(g(x))g′(x) = exp(g(x)) log a = ax log a.

(ii) Define f, g : R → R by f(x) = xr and g(x) = r log x. Then, by definition,
f = exp ◦ g. Since exp and g are differentiable, the Chain Rule Theorem implies that f
is differentiable and that f ′(x) = exp′(g(x))g′(x) = exp(g(x)) r

x
= xr r

x
. Using Proposition

1.8(ii)–(iii), this last expression equals rxr−1.

2But the proofs of these statements are far beyond the level at which today’s students are generally
taught this approach to defining irrational powers. An “it can be shown” statement is required, and it’s
for something that really can’t be shown at the level of Calculus 1.
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Remark 1.15 (Exponential and logarithm functions) For each a > 0, the function
x 7→ ax may be called the exponential function with base a. All such functions are called
“exponential functions”. In this terminology, the function exp is the exponential function
with base e. The function exp is also referred to as “the exponential function” (with no
base mentioned).

Note that for any k ∈ R, akx = (ak)x, so every function of the form a 7→ akx is also
an exponential function.

Since ax = exp(x log a), and log a is positive for a > 1 and negative for a < 1,
Proposition 1.6 implies that the exponential function with base a is strictly increasing
if a > 1 and strictly decreasing if a < 1 (and is the constant function 1 if a = 1), and
has range (0,∞) if a 6= 1. Hence for a 6= 1 this function has an inverse. This inverse
function is called the logarithm function with base a, and is denoted loga (which is best read
“log, base a” 3; the expression loga x := loga(x) is best read “log, base a, of x”). Any
such function is known as a logarithm function, or simply “log function”. Observe that
loge is the same as the natural logarithm function that we’re denoting simply as log, but
which you’re probably used to writing as “ln”.

Exercise 1.4 Show that for a, b, x > 0 and a 6= 1 6= b,

logb x =
loga x

loga b
.

Thus, any logarithm function is a constant times any other.

Remark 1.16 (Power functions and their derivatives) For each r ∈ R, Definition
1.7 defines the expression “xr” for all x > 0, and, as we have seen, this definition agrees
with definitions we have previously learned for r ∈ Q. However, for certain r we do not
need x > 0 for the expression xr to be defined. (For example, if n is a positive integer,
basic algebra produces a definition of xn for all x ∈ R, and we then define x−n = 1

xn
for

all x 6= 0. We also define x0 = 1 for all x 6= 0, in order that the property in Proposition
1.8(iii) hold for all real a 6= 0 and all integer exponents. For odd integers n, every real
number has a unique nth root, so we may define x1/n for all real x.) For each r ∈ R, and
any set U ⊆ R such that x 7→ xr is defined for all x ∈ U , the function U → R given by
x 7→ xr is called a power function, or the rth-power function. (Of course, for certain r, we

3This is one of two common ways that the notation “loga” is read. The other, “log to the base a”,
appears to be idiomatic—it makes no sense grammatically, unlike alternatives such as “log from base a”
or “log with base a”—but is the terminology used in the classic textbook [1] by Thomas, from which
many current mathematicians, including the authors of many Calculus 1-2-3 textbooks, learned calculus.
Based on the terminology “raising to a power”, which (at least for integer exponents) is probably much
older than any terminology for logarithms with bases other than 10, if y = ax there is logical justification
to say that “x is the logarithm of y from the base a,” or that “x is the log, from the base a, of y.” By
contrast, if we apply conventional rules of grammar and usage, “log to the base a” is not consistent with
the terminology for powers, or with any other uses of “to” in English.
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have other names as well, e.g. the squaring function, for r = 2 and the cube-root function
for r = 1/3.) We still use the name “(rth-)power function” (or these other names) if the
codomain R is replaced by any set containing {xr : x ∈ U}, as in “the squaring function
R→ [0,∞)” or “the cube-root function (8,∞)→ (2,∞)”.

The remainder of this Remark is optional reading; the student may skip to
Remark 1.17. In Calculus 1, one of the first things we learn is that for positive integers
r,

d

dx
xr = rxr−1; (1.5)

to derive this fact we use the Binomial Theorem. We also learn that the derivative of a
constant function is 0, so that (1.5) holds for r = 0 as well (on the domain R \ {0}), not
as a consequence of the Binomial Theorem, but because x0 has been defined to be 1 for
x 6= 0. In a good Calculus 1 course, we learn progressively that (1.5) holds for more and
more exponents, until we have shown that it is true for all rational exponents:

1. By one of several methods, we learn that

d

dx
x−1 = −x−2, (1.6)

which is (1.5) for r = −1. Simple methods by which (1.6) can be shown, without
using any “laws of exponents” for anything other than integer exponents (the only
exponents for which it is obvious that rules like Proposition 1.8(ii), (iv), and (v) are
valid), are:

(a) Direct calculation: defining f : R \ {0} → R by f(x) = x−1, we compute

f ′(x) = lim
h→0

1
x+h
− 1

x

h
= lim

h→0

x−(x+h)
x(x+h)

h
= lim

h→0

−1

x(x+ h)
=
−1

x2
.

(b) First learning the quotient rule, then computing

d

dx

1

x
=
x d
dx

(1)− 1 d
dx

(x)

x
=
x · 0− 1

x2
= −x−2.

(Method (a) is really a special case of the proof of the quotient rule, so it is not
entirely different from method (b).)

2. By one of several methods, we learn that for all positive integers n,

d

dx
x−n = −nx−n−1 (1.7)

on R \ {0}, which is (1.5) for r = [negative integer]. Simple methods by which (1.7)
can be shown are, without using any “laws of exponents” for anything other than
integer exponents, are:
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(a) First learning the quotient rule, then computing

d

dx

1

xn
=
xn d

dx
(1)− 1 d

dx
(xn)

(xn)2
=
xn · 0− nxn−1

x2n
= −nx−n−1.

(b) First establishing (1.6), then learning the Chain Rule, and then computing

d

dx
x−n =

d

dx
(xn)−1 = −(xn)−2

d

dx
(xn) = −(x−2n)nxn−1 = −nx−n−1.

Combining (1.7) with the previously-established cases of (1.5), we have now learned
that (1.5) holds for all integer exponents.

3. We show, by one of several methods, that for positive integers n, the function
x 7→ x1/n is differentiable on (0,∞), and compute that

d

dx
x

1
n =

1

n
x

1
n
−1. (1.8)

on this interval. Two methods by which (1.7) can be shown, without using any
“laws of exponents” for anything other than rational exponents, are:

(a) Proving the “ ‘Baby’ Inverse Function Theorem” and then applying it to
h : x 7→ xn. This shows that the function f : x 7→ x1/n is differentiable
and that

d

dx
x1/n = f ′(x) =

1

h′(f(x))
=

1
d
dy
yn
∣∣
y=x1/n

=
1

n(x
1
n )n−1

=
1

n(x1−
1
n )

=
1

n
x

1
n
−1.

(b) Restricting attention to n ≥ 2 (sufficient, since (1.8) has been proven already
for n = 1), showing first that f : x 7→ x1/n is continuous on (0,∞)), and then
using the algebraic identity bn−an = (b−a)(bn−1 +bn−2a+bn−3a2 + · · ·+an−1)
(for a, b ∈ R) to compute
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f ′(x) = lim
h→0

(x+ h)
1
n − x 1

n

h

= lim
h→0

[
(x+ h)

1
n − x 1

n

] [{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

]
h

[{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

]

= lim
h→0

{
(x+ h)

1
n

}n
− (x

1
n )n

h

[{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

]
= lim

h→0

(x+ h)− x

h

[{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

]
= lim

h→0

1{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

=
1{

x
1
n

}n−1
+
{
x

1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1︸ ︷︷ ︸

n terms

=
1

nx1−
1
n

=
1

n
x

1
n
−1.

If n is odd, so that x1/n is defined for all x, the methods in (a) and (b) extend from
the domain (0,∞) to the domain R \ {0}.

4. Having established (1.5) for the cases in which n is an integer or the reciprocal of a
positive integer, we apply the Chain Rule Theorem to generalize to other rational
exponents, as follows4: for an arbitrary rational number r = m

n
, where m,n are

4In our good calculus course, we do not investigate other exponents until we have proven the Chain
Rule Theorem (CRT). However, once we have established the CRT, an alternative approach to deriving
(1.5) for general rational exponents that does not require that we first handle reciprocal-integer exponents
separately, is as follows: (1) Introduce implicit differentiation (which depends crucially on the chain rule).
(2) State the Implicit Function Theorem (for real-valued functions of a single real variable), advising the
student that the proof is beyond the scope of a Calculus 1 course. (3) For an arbitrary rational number
r = m

n , where m,n are integers and n > 0, show that the Implicit Function Theorem implies that the
equation yn = xm (with (x, y) ∈ (0,∞) × (0,∞)) defines y as a differentiable function of x on (0,∞),
hence that the function x 7→ xm/n is differentiable on (0,∞). (4) Implicitly differentiate “yn = xm” with
respect to x, and then apply rules of rational exponents, to deduce that d

dxx
m/n = dy

dx = m
n xm/n−1.
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integers and n > 0, we have

d

dx
xr =

d

dx
(x

1
n )m = m(x

1
n )m−1

d

dx
x

1
n = m(x

1
n )m−1

1

n
x

1
n
−1 =

m

n
x

m−1
n

+ 1
n
−1 = rxr−1.

In our good Calculus 1 course, we have now shown that the derivative formula (1.5)
is valid for all rational exponents, using no laws of exponents that we did not know how
to prove in high school. But our method of proof was different for different types of
rational exponents. This strongly suggests that there must be some underlying principle,
undiscovered as yet, that would give a unified derivation of (1.5) for all rational exponents.
(Our proof of Proposition 1.14(ii) is exactly this unified derivation; moreover, it works
equally well for all real exponents, whether rational or irrational.)

Since the rationals are dense in the reals, we could reasonably conjecture now, in our
good Calculus 1 course, that formula (1.5) holds for all real exponents. It would have
been absurdly bold to make such a conjecture based only on knowing that (1.5) holds for
nonnegative integer exponents.

Remark 1.17 (Irrational exponents, part 2) Suppose that, instead of using Defini-
tion 1.7 to define irrational powers of positive numbers, we have defined them an “ele-
mentary” way, using a limit-procedure such as those discussed in Remark 1.12 (assuming
we have already defined rational powers by elementary means, the way we would in high
school or or that we did earlier this semester, rather than by Definition 1.7). Assume
that we have done this in the best possible way, showing that for any a > 0 and any
rational sequence (rn)∞n=1 converging to r, (i) limn→∞ a

rn exists and (ii) the value of this
limit is independent of the choice of sequence (rn). Finally, suppose we have shown that
the derivative-formula (1.5) holds for rational exponents, just based on these elementary,
intuitive definitions. To then show that (1.5) is true (with this value of r) we must do
something like the following:

1. Choose a sequence of rational numbers (rn)∞n=1 converging to r.

2. For fixed x > 0, write down the following computation, which we will do in “shoot
first and ask questions later” form:

lim
h→0

(x+ h)r − xr

h
= lim

h→0

(
lim
n→∞

(x+ h)rn − xrn
h

)
(1.9)

?
= lim

n→∞

(
lim
h→0

(x+ h)rn − xrn
h

)
(1.10)

= lim
n→∞

(
d

dx
xrn
)

= lim
n→∞

rnx
rn−1

?
= rxr−1 . (1.11)
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If we can justify equalities (1.10) and (1.11), we will have shown that the rth-power
function is differentiable on (0,∞), and that its derivative is the function x 7→ rxr−1.

Justifying (1.11) is no problem: (rn−1)∞n=1 is a rational sequence converging to r−1, so,
by what we’re assuming we’ve already proven about our elementary definition of irrational
powers, xrn−1 converges to xr−1. Since (rn) converges to r, one of our basic results about
real-valued sequences shows that the sequence (rnx

rn−1) converges to rxr−1. We can do all
this without ever setting foot in Advanced Calculus; the fact that “the limit of a product
is the product of the limits” (for convergent real-valued sequences) can easily be proven
even in the most elementary treatment of sequences, such as in Calculus 2.

But justifying the interchange-of-limits equation (1.10) is another matter entirely.
The entire notion of “interchange of limits” is far beyond the level of Calculus 1. To my
knowledge, justifying (1.10) is impossible at the level of Calculus 1, and would be difficult
even in Advanced Calculus without relying on the fact that the elementary definition of
ar for rational r is consistent with Definition 1.7.

Epilog

The (once standard) approach to defining exponentiation presented in the first few pages
of these notes is a triumph of calculus, a true gem.5 It unifies the definitions of ar for
positive integer, negative integer, non-integer rational, and irrational r; Definition 1.7
is the same for all exponents. It leads easily to the derivative formula (1.5) for all real
exponents. By showing that Definition 1.7 agrees with the “elementary” definition for
rational exponents, we see why our elementary derivations of d

dx
xr for rational r (the

optional reading in Remark 1.16) had to keep giving the same formula for all exponents.
With Definition 1.7, continuity of the function exp guarantees that for any real a > 0, any
real number r, and any rational (or even real) sequence (rn) converging to r, the sequence

5This may be difficult for modern students to appreciate, especially if they’ve been taught out of an
“early transcendentals” calculus textbook. Calculus textbooks that define exponential functions early,
through a “filling in the holes in the graph” idea—the same idea as the limit-procedures discussed in
Remark 1.12—rather than waiting until the groundwork has been laid for Definition 1.7, often say shortly
after deriving equation (1.5) for non-negative integer exponents that “We will show later” that (1.5) holds
for all real r. These textbooks slip under the rug the fact that they do not derive (1.5) from their first
definition of xr. Rather, they wait until they have redefined xr using Definition 1.7, after which they
derive (1.5) exactly as we did in the proof of Proposition 1.14. The “derivation” of (1.5) in at least
one popular early-transcendentals textbook starts by writing “xr = (eln x)r = er ln x ”, and then uses the
Chain Rule to compute the derivative. But the reasoning is completely reversed from the correct logic!
Starting with “xr = (eln x)r = er ln x ” suggests that xr = er ln x because (xb)c = xbc for all real b, c. The
truth is exactly the opposite: “xr = er ln x” is the definition of xr, a definition from which we derive the
fact that (xb)c = xbc (a fact that, in “early transcendentals” textbooks, is often relegated to an appendix).

There is nothing wrong in a student’s using the familiar formula (xb)c = xbc (familiar for rational expo-
nents only) as a mnemonic device to help remember that xr = er ln x, but the above so-called derivation
encourages the student to think, wrongly, that this formula for xr is a consequence of “(xb)c = xbc ”.
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(arn) converges to a limit that is independent of which sequence (rn) we choose. (The
continuity of exp follows from our proven differentiability, but can also be proven directly
by using LN Proposition 25.4(b).) And at the core of all this were three major theorems
from the theory of integration: the integrability of continuous functions, the Fundamental
Theorem of Calculus, and the change-of-variables theorem.
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