Some mistakes and misleading items in Section 1.1 of Bartle & Sherbert (4th ed.)

Below, "B&S" stands for Bartle & Sherbert (4th ed.). The book's notations D(f) and R(f) for the domain and range (respectively) of a function f, are also used.

Composition of Functions

Definition 1.1.12 of B&S starts with "If $f: A \to B$ and $g: B \to C$ and $R(f) \subseteq D(g) = B$, then the composite function $g \circ f$ is ...," (Recall that R(f) and D(g) are the book's notation for the range of f and the domain of g, respectively.) The "and $R(f) \subseteq D(g)$ " is redundant, and should have been omitted. The range of a function is always a subset of the codomain. The notation " $f: A \to B$ " tells you that the codomain of f is B, hence that $R(f) \subseteq B$. The notation " $g: B \to C$ " tells you that the domain of g is B. Hence we automatically have $R(f) \subset D(g)$.

In class, in the second lecture, I talked about a situation more general than having " $f : A \rightarrow B$ and $g : B \rightarrow C$ " in which the composition $g \circ f$ can be defined. (See my lecture notes for 9/2/20, p. 5, second half.) This appears to be what Bartle and Sherbert had in mind, but is not what they wrote.

In most higher-level math classes and books, the setup with " $f : A \to B$ and $g : B \to C$ " isss always used when defining composition. I mentioned the more general situation in class only because your textbook mentions it (implicitly, and usually in redundant statements like the one in Definition 1.1.12); I've never used it in MAA 4211–4212 before.

Inverse Functions

Exercise 1.1/20a (which you were not assigned) says "Suppose that f is an injection. Show that $f^{-1} \circ f(x) = x$ for all $x \in D(f)$ and that $f \circ f^{-1}(y) = y$ for all $y \in R(f)$." This problem makes no sense as written, because the hypothesis that f is injective is not enough to ensure that an inverse function exists; for that, we need f to be bi jective. This is one reason I assigned you non-book problem B1 (on Assignment 1) rather than the book's problems 1.1/20 and 1.1/24.

What the writers were thinking of in this exercise, but expressed inconsistently with the definitions in Section 1.1, is the following. Let $f : A \to B$ be a bijection. Define a function $\hat{f} : A \to R(f)$ by $\hat{f}(x) = f(x)$ for all $x \in A$. (This is an example of "shrinking the codomain", which was discussed in class.) By the definition of the range of f, the function \hat{f} is surjective. Since f is injective, so is \hat{f} (why?). Thus \hat{f} has an inverse function, \hat{f}^{-1} , and for all $x \in D(f)$ and all $y \in R(f) = \text{codomain}(\hat{f})$ we have $(\hat{f}^{-1} \circ f)(x) = (\hat{f}^{-1} \circ \hat{f})(x) = x$ and $(f \circ \hat{f}^{-1})(y) = (\hat{f} \circ \hat{f}^{-1})(y) = y$. But unless f is surjective (in which case $\hat{f} = f$), the functions f and \hat{f} are different functions, and f is not invertible.

Notational remarks. (1) Above, note that I used parentheses around the compositions in " $(\hat{f}^{-1} \circ f)(x)$, " $(\hat{f}^{-1} \circ \hat{f})(x)$, " $(f \circ \hat{f}^{-1})(y)$," and " $(\hat{f} \circ \hat{f}^{-1})(y)$ ", just as I recommended in class. B&S do this themselves in 1.1/24. (It may be that one of the exercises 1.1/20a, 1.1/24, was written by Bartle—the sole author of the first two editions—and the other was later (re)written by Sherbert.) Even when f^{-1} exists, the notation used in 1.1/20a, " $f^{-1} \circ f(x)$ " and " $f \circ f^{-1}(y)$ ", is not recommended. (2) The notation " \hat{f} " is not an official or standard notation for the function defined above. I'm using it just for this discussion, and will use it with different meanings in other discussions.

<u>Definition of a function</u>

B&S does not actually define what a *function* is; the book only defines the term "function from <u>A to B</u>". This can lead to some misunderstandings when comparing functions with different domains and/or codomains, and especially when trying to decide whether two functions are equal.

The *full* set-theoretic definition of "function" is this: A function f is actually an ordered triple of sets (A, B, \bar{f}) , where A and B are sets. and where \bar{f} is the set that B&S Definition 1.1.6 calls "a function from A to B" (i.e. \bar{f} is a subset of $A \times B$ such that for every $a \in A$, there exists a unique $b \in B$ for which $(a, b) \in \bar{f}$.) The set \bar{f} is what is called the *graph* of the function f. Thus, this careful set-theoretic definition recovers the distinction between a function and its graph that the "active" definition gave us. A function and its graph are truly *not* the same thing.

Recall that the "active", but vague, definition of *function* that I gave in class was that a function "consists of" three things: a set called the domain, a set called the codomain, and an assignment of an element of the codomain to each element of the range. Since "domain", "codomain", and "assignment of ..." are different words/phrases, the vague phrase "consists of" is easy to make precise without sacrificing the "active" nature of this definition; we can (re)define a function as an ordered triple "(domain, codomain, assignment ...)". As mentioned in class, the real problem with the "active" definition is that the meaning of "assignment" is unclear. *Given the domain and codomain*, the set-theoretic definition of "function from A to B" eliminates this problem. But this is *all* that it does.

To get a correct definition set-theoretic definition of "function" (with no "from A to B"), we still need all the data in the "active" definition. All that the "passive", set-theoretic definition of *function* does is to replace the vaguely-worded third component of the triple "(domain, codomain, assignment ...)" by something crystal clear. We can't get rid of the need to specify a domain and codomain.

In the set-theoretic definition of *function*, we obtain the wrong definition of *equality of* functions if we don't use the full set-theoretic definition. Two functions $f = (A, B, \hat{f})$ and $g = (C, D, \hat{g})$ are defined to be equal if and only if these ordered triples are equal, i.e. if and only if A = C, B = D, and $\hat{f} = \hat{g}$.

One instance in which this is important is the notion of "shrinking the codomain" of a function. If $f: A \to B$ is a function, and $R(f) \subseteq C \subseteq B$, we can define a function $\hat{f}: A \to C$ by $\hat{f}(x) = f(x)$ for all $x \in A$. If $C \subsetneq B$, then f and \hat{f} are different functions, even though their

graphs are the same set:

$$\{(x, f(x)) \mid x \in A\} = \{(x, \hat{f}(x)) \mid x \in A\}.$$

Similarly, there is a notion of enlarging (or extending) the codomain. If $f : A \to B$ is a function, and $B \subseteq E$, we can define a function $\tilde{f} : A \to E$ by $\tilde{f}(x) = f(x)$ for all $x \in A$. If $B \subsetneq E$, then f and \tilde{f} are different functions with the same graph. "Enlarging the codomain" comes up quite often. For example, when given an integer-valued function, we may want to "regard" it as a real-valued function. What this really means is that, using the fact that $\mathbf{Z} \subset \mathbf{R}$, we are replacing the original \mathbf{Z} -valued function f by the corresponding \mathbf{R} -valued function \tilde{f} .

A second instance in which the full set-theoretic definition of "function" plays a role is in the distinguishing unequal "empty" functions. An *empty* function is a function whose domain is the empty set. For any set B, we have $\emptyset \times B = \emptyset$. The empty set itself satisfies the criteria to be a function \hat{f} from \emptyset to B: a set of order pairs (a, b) such that for each $a \in \emptyset$, there is a unique $b \in B$ for which $(a, b) \in \emptyset$. (This criterion is satisfied *vacuously*, since there *are* no elements $a \in \emptyset$.) Moreover, \emptyset is the *unique* subset of the empty set $\emptyset \times B$, so there are no other functions from \emptyset to B. Thus for each set B, the ordered triple $(\emptyset, B, \emptyset)$ is the unique function from \emptyset to B. We call this function the empty function with codomain B, or the empty B-valued function. The graph of every empty function is the same, namely the empty set. But if B and C are different sets, then the corresponding empty functions are different: $(\emptyset, B, \emptyset) \neq \emptyset, C, \emptyset$).

Empty functions are not very interesting or important. The main purpose of defining them is to enable various *other* definitions, theorems, etc., to be worded without an extra statement for the special case in which some set happens to be empty. (However, if the statement of a theorem allows for some function to be an empty function, then depending on what's being stated, it may still be necessary to handle the empty-function and nonempty-function case separately in the proof.) The student may easily check the following:

- 1. If $A \neq \emptyset$, there does not exist any function from A to \emptyset . (Hence there's not a second type of "empty function" that arises from considering empty codomains.)
- 2. Every empty function is injective. (The injectivity criterion is met vacuously.)
- 3. The empty function from \emptyset to itself (vacuously) satisfies the definition of "surjective function" (hence is bijective, in view of the preceding), and satisfies the definition of the identity map id_A for $A = \emptyset$. Thus, the function id_{\u03c0} could reasonably be called "the empty bijection".