
MAA 4211, Fall 2021–Assignment 2’s non-book problems

• In the problems below:

– For any sets A and B, the notation “A ∼ B” means “there exists a bijection
from A to B.”

– Earlier problems often provide results that will help with later problems.

• Exception to the “no use of implication-arrows” rule (on this and future
assignments, as well as exams): If you’re given an “if and only if” statement to
prove, you may use the notation “(=⇒)” (respectively, “(⇐=)”) to indicate that
you’re starting the proof of the forward (respectively, reverse) implication. Similarly,
if you’re asked to prove that several listed statements are equivalent, you may use
notation such as “(ii) =⇒ (iii)” to indicate which implication you’re about to start
proving.

B1. Let X and Y be nonempty sets. Show that there exists an injective map f : X → Y
if and only if there exists a surjective map g : Y → X. (“Map” is another word for
“function”.)

Note: In case you happen to know what the Axiom of Choice is: you’re allowed to
use it, and you don’t have to state that you’re using it.

If you don’t know what the Axiom of Choice is, don’t worry about what I just

said. I guarantee you that you already believe the Axiom of Choice and that you’ll

assume it implicitly whenever it’s needed.

B2. (a) Prove that the inverse of a bijection is a bijection. (Consequently, for any sets A
and B, if A ∼ B then B ∼ A.)

(b) Prove that the composition of two bijections is a bijection. (Consequently, for
any sets A,B and C, if A ∼ B and B ∼ C, then A ∼ C.)

B3. Recall that, by definition, a nonempty set S is finite if S ∼ {1, 2, . . . , n} for some
n ∈ N. In an early lecture, the following was asserted, with its proof left as an exercise
(which is exactly this homework problem):

For any set S, if n,m ∈ N are such that S ∼ {1, 2, . . . , n} and S ∼ {1, 2, . . . ,m},
then m = n.

Prove this assertion, being careful to avoid circular reasoning. What you’re proving
here is exactly what allowed us to define cardinality of a nonempty finite set. In your
proof, neither the word “cardinality” nor any notation for it should appear, nor should
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any statements like “this set has n elements” or “this set has more [or fewer] elements
than this other set,” or “these sets have the same number of elements.” (For finite sets,
“number of elements” is a synonym for cardinality, so does not make sense until after the
assertion above is proven.)

You are allowed to use the fact that if n,m ∈ N, then n < m if and only if
{1, 2, . . . , n} ( {1, 2, . . . ,m}.

B4. Prove that every subset of a finite set is finite.

B5. (Do Abbott exercise 1.5.1 first.) Prove the following proposition, which was stated
in class on Friday, Sept. 24.

Proposition. Let S be a set. Then the following are equivalent:

(i) S is at most countable.

(ii) There exists an injective function from S to N.

(iii) Either S = ∅ or there exists a surjective function from N to S.

(iv) Either S = ∅ or there exists a surjective function from some countably
infinite set to S.

Note: (1) The combination of problem B4 above and Abbott exercise 1.5.1 proves the
following fact: Every subset of an at-most countable set is at most countable. You may
assume this fact when doing problem B5.

(2) : The implications “(iii) =⇒ (i)” and “(iv) =⇒ (i)” are very useful in giving
efficient proofs that certain sets, or types of sets, are at most countable.

(3): Often, the most efficient way to prove the equivalence of several statements—
say (i)–(iv), for the sake of concreteness—is to prove “(i) =⇒ (ii),”, “(ii) =⇒ (iii),”
“(iii) =⇒ (iv),”, and “(iv) =⇒ (i)” (a strategy abbreviated as “(i) =⇒ (ii) =⇒ (iii) =⇒
(iv) =⇒ (i)”). With this strategy, there are only four one-way implications you need
to prove, rather than 12 (one for each choice of the pair (A,B) in “A implies B”). But
sometimes it’s easier to proceed by proving some of the pairwise-equivalences directly,
e.g. by proving “(i) ⇐⇒ (ii),” “(ii) ⇐⇒ (iii),” and “(iii) ⇐⇒ (iv).” In particular, the
latter strategy (or a hybrid strategy) may be more efficient if some of these “iff”s follow
immediately from some previously proven result.

(4): Recall that for any set B, there is a (unique) function f : ∅ → B (the “empty
function with codomain B”), and that this function is injective. These facts become clear
only when we use the set-theoretic definition of “function from A to set B”: a subset
G ⊆ A × B with the property that for each a ∈ A, there exists a unique b ∈ B such
that (a, b) ∈ G. When A = ∅, the Cartesian product A × B is also empty (there are
no ordered pairs (a, b) with a ∈ A and b ∈ B)), and the subset ∅ ⊂ ∅ × B = ∅ satisfies
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the definition of “function from ∅ → B vacuously (every statement of the form “For each
a ∈ A, 〈blah blah blah〉” is true, because there are no elements a ∈ ∅). The condition
for injectivity—that there do not exist distinct elements a1, a2 ∈ ∅ and an element b ∈ B
such that (a1, b) and (a2, b) both lie in G = ∅—is satisfied vacuously, since there are no
elements a1, a2 ∈ ∅ period.

The situation is quite different for empty codomains. If B = ∅ but A is nonempty,
there are no functions from A to B, not even “empty functions”. The only subset G of
A × ∅ = ∅ is ∅ itself, and this subset does not have the property that for every a ∈ A,
there is some b ∈ B = ∅ for which (a, b) ∈ G = ∅.

However, the function I called “id∅” in class—the empty function with empty
codomain—exists, and in addition to being injective vacuously, is surjective vacuously
(“For each b ∈ ∅, 〈blah blah blah〉” is true no matter what “blah blah blah” is, because
there are no elements b ∈ ∅). Thus we may (accurately) refer to this function as the
“empty bijection”.

B6. (a) Let A,B be sets and assume that f : N → A and g : N → B are surjective.
Define h : N→ A ∪B by

h(n) =


f(n+1

2
) if n is odd,

g(n
2
) if n is even.

(Thus h(1) = f(1), h(2) = g(1), h(3) = f(2), h(4) = g(2), etc.) Show that h is surjective.

(b) Prove that if sets A and B are at most countable, then so is A ∪B.

(c) Prove that, for each n ∈ N, if A1, . . . , An are at-most countable sets, then
A1 ∪ A2 ∪ · · · ∪ An is at most countable.

Note: Part (b) is, of course, a step in the proof of (c). The result proven in (c) is a
stronger version of Abbott’s Theorem 1.5.8(i), with “countably infinite” [his “countable”]
generalized to “at most countable”. You’re not allowed to assume any part of Abbott’s
Theorem 1.5.8; that theorem is a special case of what I am having you prove, and the
proofs I’m leading you to, in this problem and the next, yield more than Theorem 1.5.8
with less work.

B7. Fact you may assume for this problem: N ×N is countably infinite. (A proof was
sketched in class.)

(a) Let {An}n∈N be an infinite collection of nonempty at-most countable sets, indexed
by N. Prove that

⋃∞
n=1An is at most countable. (This is a stronger version of Abbott’s

Theorem 1.5.8(ii).)

Hint: Applying problem B5, you should be able to use the hypothesis that each of the
sets An is nonempty and at-most countable to produce a surjective map N×N→

⋃∞
n=1 An.
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(b) Let I be a nonempty, at-most countable set, and let {Bi}i∈I be a family of at-most
countable sets, indexed by I. Prove that

⋃
i∈I Bi is at most countable.

Note: The conclusions of (a) and (b) are each often stated with the simple and memorable
wording,

The countable union of countable sets is countable. (1)

Statement (1) is a true statement with either of the standard conventions for what “count-
able” means. However, with the convention that “countable” means “countably infinite”
(Abbott’s convention), statement (1) is weaker than it is with the convention that “count-
able” means “finite or countably infinite” (for which I’m using the term “at most count-
able”). However, if “at most countable” is substituted for “countable” in statement (1),
the statement becomes less pithy, and loses its punch.
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