
MAA 4211, Fall 2021–Assignment 3’s non-book problems

B1. A sequence (an)∞n=1 in a set X is called eventually constant if, for some N ∈ N, all
terms with n ≥ N are equal (hence equal to aN); equivalently, if there exist N ∈ N and
c ∈ R (the eventual value of the sequence) such that for every n ≥ N we have an = c.
Two sequences (an)∞n=1, (bn)∞n=1 are is called eventually equal if, for some N ∈ N, we have
an = bn for each n ≥ N . (Thus, another definition of “eventually constant” is “eventuallly
equal to some constant sequence.”)

(a) Let A := (an)∞n=1 be an eventually constant sequence in R. Show that A converges
to its eventual value.

(b) Let A := (an)∞n=1, B := (bn)∞n=1 be eventually equal sequences in R. Show
that either both sequences converge, or both diverge. In th convergent case, show that
lim(A) = lim(B).

B2. Let (an)∞n=1 be a sequence in R, let L ∈ R, and consider the statement “limn→∞ aN =
L.” Recall that the definition of this statement is: for all ε > 0, there exists N ∈ N such
that for all n ≥ N , the inequality |an − L| < ε holds. There are a few other valid ways
to word this definition.1 But there are also a lot of invalid ways of wording it. Below
are six of them. Three of them define some sequence-property (potentially a property
that we’ve already defined some other, simpler way, and potentially a property that
we haven’t yet named). Two are gibberish that should make your head hurt, and to
which you should be unable to attach a clear meaning. One is not quite gibberish—there
actually is an unambiguous meaning—but it’s not easy to figure out, and it’s definitely
not “limn→∞ aN = L.”

Determine, in each case, whether the given statement defines some sequence-property,
or is simply gibberish. In the non-gibberish case(s), state more simply the property that
the statement defines.

(a) There exists N ∈ N such that for all ε > 0 and all n ≥ N , we have |an − L| < ε.

(b) We have |an − L| < ε for all n ≥ N , for some N ∈ N, for all ε > 0.

(c) For some N ∈ N, we have |an − L| < ε for all n ≥ N , for all ε > 0.

(d) For some ε > 0, and all N ∈ N, and all n ≥ N , we have |an − L| < ε.

(e) For ε > 0 and n ≥ N , we have |an − L| < ε, where N ∈ N.

1For example, “for all n ≥ N , the inequality |an − L| < ε holds” can be replaced by “n ≥ N implies
|an − L| < ε.” Until you become experts at being able use universal quantifiers (“for all”, “for every”,
etc.) and existential quantifiers (“for some”, “there exists”, etc.) correctly—never putting them in a
wrong order, or locating them in the wrong part of a sentence, or omitting necessary quantifiers, etc.—I
recommend sticking only to universal and existential quantifiers, and not using an “implies” phrase to
replace a quantification.
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(f) We have |an − L| < ε, for ε > 0, n ≥ N , and N ∈ N.

B3. A reordering of a sequence (an)∞n=1 is a sequence of the form (af(n))
∞
n=1, where f :

N → N is a bijection. Said another way, a sequence B := (bn)∞n=1 is a reordering of
(an)∞n=1 if and only if there exists a bijection f : N → N such that for all n ∈ N, the
relation bn = af(n) holds.

Prove that if A := (an)∞n=1 is a convergent sequence in R, then every reordering of
this sequence converges to the same value, namely limn→∞ an.

B4. Recall from class that a definition, more general than the one we’ve been using, of an
(infinite) sequence in a set X, is a function from a domain of the form {n ∈ Z : n ≥ n0}
to X. Such as sequence would usually written with notation such as (an)∞n=n0

. The
definitions of convergence and limit of such sequences are identical to the definitions for
n0 = 1. In this context, when we say that something about an is true for all n ≥ N , it is
implicit that we are taking N ≥ n0, since otherwise an would not be defined.

Given a sequence A := (an)∞n=1, and any n0 ∈ N, we can consider the sequence
(an)∞n=n0

, often called a tail of A. (Each choice of n0 determines a tail.)

(a) Prove that, for any real-valued sequence A := (an)∞n=1, the following are equiva-
lent:

(i) A converges.

(ii) At least one tail of A converges.

(iii) Every tail of A converges.

Also prove that, in the convergent case, every tail of A converges to lim(A). (This should
come out in the wash while you’re showing the equivalences.)

(b) Given a sequence A := (an)∞n=1, and any k ∈ N, we can consider the sequence
(an+k)∞n=1. Such a sequence is also called a tail of A—the terms are ak+1, ak+2, ak+3, . . .—
but is indexed differently from the tails defined above (it’s still a function from N to R,
not a function from {n ∈ N : n ≥ k + 1} to R).

For the sake of concreteness in this problem, call such tails “alternatively defined
tails”. Prove everything in part (a), with “tail” replaced by “alternatively defined tail”.

B5. (a) Let Z be any nonempty set, and let Func(Z,R) denote the set of all functions
from Z to R. As temporary notation, just for this problem, let 0 denote the constant
function with value 0 (i.e. 0(z) = 0 for all z ∈ Z). For f, g ∈ Func(Z,R) and c ∈ R we
define elements f + g ∈ Func(Z,R) and cf ∈ Func(Z,R) by

f + g = the function “z 7→ f(z) + g(z)”, (1)

cf = the function “z 7→ c · f(z)”. (2)
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Check that, with the operations above, Func(Z,R) is a vector space with zero-element 0.
(Look up the definition of “vector space”, which you probably haven’t reviewed since you
took MAS 4105, to make sure you’re checking everything that needs to be checked.)

(b) Let R∞ denote Func(N,R)—i.e. the set of all real-valued sequences. The idea behind
the notation “R∞” is that we oftern think of a sequence in R, informally, as an “ordered
∞-tuple”, or infinite list, of real numbers. When we have this mental point of view, we
often put a left-parenthesis in front of the list, and sometimes at the end, as in

(a1 , a2 , a3 , . . .

or
(a1 , a2 , a3 , . . . ).

By part (a), R∞ is a vector space (when we equip R∞ with the operations defined in
equations (1) and (2)).

(i) Given A = (an)∞n=1, B = (bn)∞n=1 ∈ R∞ and c ∈ R, define sequences A + B and
cA by

A+B := (an + bn)∞n=1

and
cA := (can)∞n=1 .

Check that these operations correspond precisely to the operations (1) and (2) when
Z = N. the notation “A+ B” used in class. and “cX” introduced in class (and in B&S,
p.63).

(ii) In “list form”, what is the zero element of R∞ ?

(c) Let R∞
b ⊆ R∞ denote the set of bounded real-valued sequences. Show that R∞

b is
a (vector) subspace of R∞. (Recall that given a vector space V , a subset W ⊆ V is a
subspace if and only if (i) the zero element of V lies in W , (ii) V is closed under addition,
and (iii) V is closed under multiplication by scalars. The pair “(i) +(iii)” can be replaced
by “(i)′+(iii”), where (i)′ is the statement that W is nonempty.)

(d) R∞
cvgt ⊆ R∞ denote the set of convergent real-valued sequences. Show that R∞

cvgt is a
(vector) subspace of R∞.

(e) Let s : R∞
b → R and i : R∞

b → R be the maps defined by s(A) = sup(range(A)) =
sup{an : n ∈ N} (where A = (an)∞n=1) and i(A) = inf(range(A)). Let L : R∞

cvgt → R be the
map defined by L(A) = limA. In linear-algebraic terms, what special type of map are s,
i, and L? What have we proven that shows this?
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Remark. For n ∈ N, writing elements of the set Func(Nn,R), where Nn =
{1, 2, 3, . . . , n}, in “list form”—in this case, a finite list—we see that there is a natural
bijection from Func(Nn,R) to Rn. Under this bijection, the operations on Func(Nn,R)
correspond to the usual vector-space operations on Rn. This is additional motivation for
the notation “ R∞ ”.

B6. (a) Let a ∈ R, with a > 1. Show that the sequence (an)∞n=1 is unbounded above.

Note: (1) No infinite limits (e.g. “limn→∞ an =∞”) should enter your proof. We
have not defined what this limit-statment means yet. (2) No logarithmic functions
should enter your argument, either explicitly or implicitly. We are a long way from
being able to define logarithmic functions. (3) As always, no circular reasoning, or
any argument that depends on something we haven’t proven, is allowed. For example,
something like “{an : n ∈ N} is unbounded above because an can be arbitrarily large”
is circular reasoning; it simply restates the desired conclusion in another (still unproven)
way.

(b) Let b ∈ R satisfy |b| < 1. Use part (a) to show that limn→∞ bn = 0.

B7. In Abbott exercise 2.3.1(b) you are asked to prove that if (xn)∞n=1 is a sequence in
[0,∞) ⊆ R converging to x, then x ≥ 0 and limn→∞

√
xn =

√
x. Find the mistake in the

followng “proof” of this result.

“ Since limits ‘behave well’ with respect to arithmetic,

lim
n→∞

xn = lim
n→∞

√
xn
√
xn = ( lim

n→∞

√
xn)( lim

n→∞

√
xn) = ( lim

n→∞

√
xn)2

Hence limn→∞
√
xn = ±

√
limn→∞ xn.

Since
√
xn ≥ 0, we cannot have limn→∞

√
xn < 0. Thus if limn→∞ xn > 0,

we cannot have limn→∞
√
xn = −

√
limn→∞ xn, so we must have

limn→∞
√
xn =

√
limn→∞ xn. If limn→∞ xn = 0, then

√
limn→∞ xn = 0 =

−
√

limn→∞ xn, so limn→∞
√
xn = 0, and again limn→∞

√
xn =

√
limn→∞ xn. ”

B8. (Do Abbott exercises 2.3.5 and 2.4.2 first.)
Let X := (xn)∞n=1 be the sequence defined recursively by

x1 =
1

2
,

xn+1 =
1

2 + xn
for each n ∈ N.

(So X is the sequence

1

2
,

1

2 + 1
2

,
1

2 + 1
2+ 1

2

,
1

2 + 1
2+ 1

2+1
2

, . . . ,
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an example of something call a continued fraction.) Prove that X converges and find its
limit.

Hint: prove that the even-numbered subsequence and odd-numbered subsequence
both converge and that their limits are the same. Then apply Abbott exercise 2.3.5.

Warning: You cannot prove that a limit (or anything else) exists by assuming it
exists. However, before you get to the proof stage, there’s nothing wrong with asking
yourself, “If the limit existed, what would it have to be?” Intelligent guesswork is part
of problem-solving. Just don’t forget that even if assuming the limit exists leads to only
one possible value for it, that fact doesn’t prove that the limit exists. (See, for example,
Abbott exercise 2.4.2(a).)
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