
MAA 4211, Fall 2021–Assignment 4’s non-book problems

Throughout, “series” always means “series of real numbers”.

B1. (a) Let A := (An)∞n=1 be a sequence in R, and assume A is not eventually constant.
Let B be the subsequence of A formed by removing “stutters”: let b1 := a1 ; let b2 be
the first term of A not equal to b1; let b3 be the next term of A not equal to b2; etc.
More explicitly, B := (ani)

∞
i=1, where (ni)

∞
i=1 is the strictly increasing sequence in N defined

recursively as follows:

1. Let n1 = 1.

2. For a given i ∈ N, if n1, . . . , ni have been defined, let

ni+1 = min{n ∈ N : n > ni and an 6= ani}. (1)

(The set on the right-hand side of (1) is nonempty since, otherwise, the sequence A would
be eventually constant. The well-ordering principle for N therefore assures us that this
subset of N has a minimal element.)

Prove that A converges if and only if B converges, and that in the convergent case,
limA = limB.

(b) Let C := (cn)∞n=1 be a sequence in R, and let S = {n ∈ N : cn 6= 0}. Define the
notation “

∑
n∈S cn” by

∑
n∈S

cn =



∑∞
i=1 cni

if S is infinite and (ni)
∞
i=1 is the strictly increasing

sequence in N with range S;∑k
i=1 cni

if S finite and nonempty, and n1 < n2 < · · · < nk

are the elements of S;

0 if S is empty.

(i) Show that if S is infinite, then
∑∞

n=1 cn converges if and only if
∑

n∈S converges.
Show also that, in the convergent case,

∑∞
n=1 cn =

∑
n∈S cn .

Note: There is a reason that part (a) was assigned before part (b)(i).

(ii) Show that if S is finite, then
∑∞

n=1 cn converges and that, again,
∑∞

n=1 cn =
∑

n∈S cn .

Remark. Problem B1(b) formalizes the principle that “in infinite series, terms that
are zero don’t make a difference”—i.e. they affect neither whether a series converges, nor,
in the convergent case, the value of the sum.
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B2. (Extending Abbott’s Theorem 2.7.7.) A series
∑∞

n=n0
an (where n0 ∈ Z) is called an

alternating series if the terms are all nonzero and alternate strictly in sign (the signs of
an and an+1 are opposite for all n ≥ n0). A common example is the alternating harmonic
series 1− 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ . . . .

Abbott’s Theorem 2.7.7 (in which n0 = 1) implicitly broadens the definition of “al-
ternating series” to include some series whose terms are eventually zero. For the sake
of the theorem below, we will allow the same broader meaning for “alternating series”.
Specifically, given an eventually-zero sequence (an)∞n=n0

, we will still call
∑∞

n=n0
an an

“alternating series” if, for some natural number N ≥ n0, (i) an = 0 for all n ≥ N , but (ii)
the terms an with n < N are all nonzero and alternate strictly in sign.

“Alternating Series Theorem”.1 Let
∑∞

n=1 an be an alternating series for
which |a1| ≥ |a2| ≥ |a3| ≥ . . . (i.e. |an| ≥ |an+1| for all n ≥ 1) and for which
limn→∞ an = 0. Then

∑∞
n=1 an converges to a value that is (non-strictly)

between 0 and a1:

if a1 > 0, then 0 ≤
∞∑
n=1

an ≤ a1 ; (2)

if a1 < 0, then a1 ≤
∞∑
n=1

an ≤ 0. (3)

(a) Prove the “Alternating Series Theorem” by considering the even-indexed and odd-
indexed subsequences of the sequence (sn)∞n=1 of partial sums of

∑∞
n=1 an, and using the

result of Abbott exercise 2.3.5 (part of the previous homework assignment). Hint: show
that each of these partial-sum subsequences is monotone and bounded. Towards this
end, group the terms into pairs of consecutive terms, possibly with unpartnered terms at
the beginning or end (a necessity if n is odd). Once you’ve shown that limn→∞ s2n and
limn→∞ s2n+1 both exist, you can check whether they’re equal by examining the difference
of these limits.

(b) Show that this theorem implies an analogous theorem for alternating series whose
initial index is an arbitrary n0 ∈ Z. (Thus, there is effectively no loss in generality by our
having stated the “Alternating Series Theorem” just for series with initial index 1.)

Discussion before part (c). The importance of statements (2) and (3) comes from
their application to estimating sums of series that satisfy the hypotheses of the theorem.

1Abbott’s Theorem 2.7.7 deals only with the case a1 ≥ 0 (a consequence of his hypotheses (i) and
(ii)), and asserts only that when the series “passes the test”—i.e. when the hypotheses are satisfied— the
series converges; Theorem 2.7.7 does not include any conclusions like statements (2) or (3) in the theorem
stated above. Since these statements have nothing to do with testing for convergence, I’ve chosen the
nickname “Alternating Series Theorem” for this result instead. Neither Abbott’s nickname nor mine is
standard.
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For any convergent series
∑

n an, if we want to know the value of the series but we
don’t have an exact formula for it, the best we can do is to estimate this value by adding
up the first N terms for some N—i.e., by taking the N th partial sum sN as an estimate
of the value of the full series. Of course, an estimate is not of much use if we have no way
of telling how close it is to the value we’re trying to estimate. We define the error of an
estimate of any quantity by

error = (true value of quantity)− (estimate).

The absolute value of the error is a measure of how good the estimate is; the sign of the
error indicates whether our estimate is an underestimate or an overestimate.

Given a sequence A := (an)∞n=1 for which the series
∑∞

n=1 an converges, if sN(A)
denotes the N th partial sum and EN(A) denotes the corresponding error , then

EN(A) =
∞∑
n=1

an − sN(A) =
∞∑
n=1

an −
∞∑

n=N

an =
∞∑

n=N+1

an ,

the tail of the series corresponding to the tail (an)∞n=N+1 of the sequence A.

Part (c). Observe that if the series
∑∞

n=1 an satisfies the hypotheses of the “Alter-
nating Series Theorem”, any tail of a series satisfies these hypotheses as well. (i) Using
this fact and the theorem, what are the strongest conclusions you can draw about the
absolute value and sign of the error EN(A) (where N ∈ N is arbitrary)? (ii) For the
series

∑∞
n=1(−1)n−1/n3, how many terms would we add in order to estimate the value

of the series to within 10−6 ? (iii) For the convergent “p-series”
∑∞

n=1 1/n3, explain why
adding up the same number of terms of as you used in (ii) would lead to an error for
whose absolute value would be greater than the corresponding error for the alternating
series in (ii).

B3 (inserted 11/8/21 to help with next problem). Let
∑∞

n=1 an be a conditionally conver-
gent series.

(a) Show that the sequence (an)∞n=1 has infinitely many positive and infinitely negative
terms. I.e. show that each of the sets S+ := {n ∈ N : an > 0} and S− := {n ∈ N : an > 0}
is infinite.

(b) Show that both
∑

n∈S+
an and

∑
n∈S−

an diverge, with their partial sums ap-
proaching∞ and −∞, respectively. (Notation for these two series is as defined in problem
B1(b).)
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B4 (renumbered 11/8/21). Rearrangements of conditionally convergent series.
(You may assume the results of B3 to do this problem. Even with that hint, you are
likely to find this problem difficult.)

Let
∑∞

n=1 an be a conditionally convergent series.

(a) Let r ∈ R. Show that
∑∞

n=1 an has a rearrangement that converges to r.

(b) Show that
∑∞

n=1 an has a rearrangement
∑∞

n=1 bn for which
∑∞

n=1 bn =∞.

(c) Show that
∑∞

n=1 an has a rearrangement
∑∞

n=1 bn for which
∑∞

n=1 bn = −∞.

B5 (renumbered 11/8/21). (Ratio Test). The Ratio Test you learned in Calculus 2 says
this:

Let (an)∞n=1 be a sequence for which an 6= 0 for all n.

(i) If limn→∞
∣∣an+1

an

∣∣ < 1, then
∑∞

n=1 an converges absolutely.

(ii) If limn→∞
∣∣an+1

an

∣∣ > 1, then
∑∞

n=1 an diverges.

(Recall that a hypothesis of the form “limn→∞ bn < (whatever),” [or a similar statement
with “<” replaced by “>”, “≤”, or “≥”, there is an implicit “Assume that limn→∞ bn
exists and satisfies ... .” In particular, in the Ratio Test above, we are assuming that
limn→∞

∣∣an+1

an

∣∣ exists.)

(a) In Abbott exercise 2.7.9, you proved statement (i) of the Ratio Test. Now prove
statement (ii).

Discussion to set up part (b). Because of its reliance on a limit that may or may
not exist, the Ratio Test is more restricted in scope than (it turns out) it needs to be.

For example, suppose
(

an+1

an

)∞
n=1

is the sequence (1
2
, 1
3
, 1
2
, 1
3
, 1
2
, 1
3
, . . . ). Then limn→∞

∣∣an+1

an

∣∣
does not exist, so the Ratio Test (as written above) does not apply. But

∣∣an+1

an

∣∣ ≤ 1
2
< 1

for all n, and if you look back at your proof of part (i) of the Ratio Test, you should see
that the same argument still works.

Below, you will prove a stronger version of the Ratio Test that can handle examples
such as the one above, using the fact that lim sup and lim inf exist for any bounded
sequence in R. Note that any sequence of nonnegative real numbers is bounded below,
so for such a sequence, “bounded above” implies “bounded”.

(b) (“Enhanced Ratio Test”.) Let
∑∞

n=1 an be a series in which an 6= 0
for all n.

(i)′ Assume that the sequence
(∣∣an+1

an

∣∣)∞
n=1

is bounded above and that

lim supn→∞
∣∣an+1

an

∣∣ < 1. Prove that
∑∞

n=1 an converges absolutely.
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(ii)′ Assume that for all n sufficiently large, |an+1| ≥ |an| > 0. Prove that
∑∞

n=1 an
diverges.

(Remember: “Statement P (n) is true for all n sufficiently large” means “There
exists N ∈ N such that P (n) is true for all n ≥ N .”)

(c) Prove that statement (i)′ of the “Enhanced Ratio Test” implies statement (i) of
the original Ratio Test. Also, give an example of a series that satisfies the hypotheses of
(i)′ but not (i). (Thus, statement (i)′ is stronger than statement (i), since there are series
that satisfy the hypotheses of (i)′ but not (i).)

(d) Prove that statement (ii)′ of the “Enhanced Ratio Test” implies statement (ii)
of the original Ratio Test. Also, give an example of a series that satisfies the hypotheses
of (ii)′ but not (ii). (Thus, statement (ii)′ is stronger than statement (ii), since there are
series that satisfy the hypotheses of (ii)′ but not (ii).)

(e) Show that the Ratio Test and “Enhanced Ratio Test” generalize to series
∑∞

n=1 an
in which an 6= 0 for all n sufficiently large.

B6. Find, with proof, all limit points of the subset of A of R given by

A =

{
1

n
+

1

m
: m,n ∈ N

}
.

(Your answer should be some subset C ⊆ R with the property that x ∈ C if and only if
x is a limit point of A. Thus there will be two facts you’ll need to prove about your set
C: (a) if x ∈ C,then x is a limit point of A, then x ∈ C, and (b) if x is a limit point of
A, then x ∈ C. You’re going to find fact (b) much harder to prove than fact (a).)
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