MAA 4212, Spring 2009-Homework \# 1 non-book problems

Hand in only A2.
A1. Let $a, b \in \mathbf{R}, a<b$, and let $f:[a, b] \rightarrow \mathbf{R}$. Prove that if f is integrable on $[a, b]$, then for any sequence $\left(\mathcal{P}_{n}, T_{n}\right)$ of pointed partitions for which $\left\|\mathcal{P}_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} S\left(f ; \mathcal{P}_{n}, T_{n}\right)=\int_{a}^{b} f
$$

(Hence the integral can be evaluated by taking such a limit, if you know ahead of time that f is integrable.)

A2 (formerly called A1). For any real-valued function f, the positive part of f, denoted f_{+}, and negative part of f, denoted f_{-}, are defined by $f_{+}(x)=\max \{f(x), 0\}$ and $f_{-}(x)=$ $-\min \{f(x), 0\}$. (Thus both f_{+}and f_{-}are non-negative, and $f=f_{+}-f_{-}$[why?].)

Let $a, b \in \mathbf{R}, a<b$, and let $f:[a, b] \rightarrow \mathbf{R}$. Prove that if f is integrable on $[a, b]$, then so are f_{+}and f_{-}.

